Diễn Đàn MathScope

Diễn Đàn MathScope (http://forum.mathscope.org/index.php)
-   Sưu tầm các kết quả (http://forum.mathscope.org/forumdisplay.php?f=165)
-   -   Một số kết quả đẹp về số Pi ($\pi$) (http://forum.mathscope.org/showthread.php?t=31186)

batigoal 08-05-2012 09:58 PM

Một số kết quả đẹp về số Pi ($\pi$)
 
Chào các bạn. Sau một thời gian tạm nghỉ với toán sơ cấp, Thời gian qua batigoal cũng đã tìm hiểu thêm về số Pi và cũng đã tìm hiểu thu được một số kết quả rất đẹp như sau: . Đây là bài viết ủng hộ topic này [Only registered and activated users can see links. Click Here To Register...] như đã nói.:))
Chắc hăn nhiều bạn trong chúng ta đều biết đến tổng nổi tiếng này $\sum_{i=1}^{\infty}\frac{1}{i^2}=\frac{\pi }{6}
$ nhưng bên cạnh đó còn có một số kết quả ấn tượng liên quan đến số $\pi$. Sau đây là 1 số kết quả như thế.

Một số đẳng thức đẹp về số $\pi$ . Việc chứng minh xin dành cho bạn đọc cho topic thêm xôm.
$$\sum_{i=1}^{\infty}\frac{1}{i^2}=\frac{\pi }{6}$$
$$\sum_{i=1}^{\infty}\frac{1}{i^4}=\frac{\pi ^4}{90}$$
$$\sum_{i=1}^{\infty}\frac{1}{i^6}=\frac{\pi^6 }{945}$$
$$\sum_{i=1}^{\infty}\frac{1}{(2i-1)^2}=\frac{\pi^2 }{8}$$
$$\sum_{i=1}^{\infty}\frac{1}{(2i-1)^4}=\frac{\pi^4 }{96}$$
$$\sum_{i=1}^{\infty}\frac{1}{(2i-1)^6}=\frac{\pi^6 }{960}$$
$$\sum_{i=1}^{\infty}\frac{(-1)^{i+1}}{i^2}=\frac{\pi^2 }{12}$$
$$\sum_{i=1}^{\infty}\frac{(-1)^{i+1}}{i^4}=\frac{7\pi^4 }{30240}$$
$$\sum_{i=1}^{\infty}\frac{(-1)^{i+1}}{i^6}=\frac{31\pi^6}{12}$$

$$\sum_{i=1}^{\infty}\frac{1}{\binom{2i}{i}}=\frac {1}{3}+\frac{2\pi }{9\sqrt{3}}$$
$$\sum_{i=1}^{\infty}\frac{i}{\binom{2i}{i}}=\frac {2}{3}+\frac{2\pi }{9\sqrt{3}}$$
$$\sum_{i=1}^{\infty}\frac{i^2}{\binom{2i}{i}}=
\frac{4}{3}+\frac{10\pi }{27\sqrt{3}}$$
$$\sum_{i=1}^{\infty}\frac{1}{i\binom{2i}{i}}=
\frac{\pi }{3\sqrt{3}}$$
$$\sum_{i=1}^{\infty}\frac{1}{i^2\binom{2i}{i}}=
\frac{\pi^2 }{18}$$
$$\sum_{i=1}^{\infty}\frac{2-i}{i^2\binom{2i}{i}}=\frac{2\pi }{9\sqrt{3}}$$
(Còn nữa...)

magician_14312 09-05-2012 01:49 AM

Các ví dụ đầu tiên có thể dùng chuỗi Fourier để chứng minh.

VD1. $\displaystyle \sum_{n=1}^{\infty}\frac{1}{n^2}=\frac{\pi^2}{6}$

Xét $f(x)=x^2$ là hàm chẵn, liên tục trên $\mathbb{R}$. Khai triển hàm này theo chu kì $2\pi$, trong khoảng $[-\pi;\pi]$.
Các hệ số $b_n=0$, các hệ số còn lại là:
$$a_0=\frac{2}{\pi}\int_{0}^{\pi}x^2dx=\frac{2}{3} \pi ^2$$
$$\begin{align*}
a_n&=\frac{2}{\pi}\int_{0}^{\pi}x^2 \cos nxdx \\
&=\left .\frac{2}{\pi}x^2.\frac{\sin nx}{n} \right | _{0}^{\pi}-\frac{4}{n\pi}\int_{0}^{\pi}x \sin nx dx\\
&= \left .\frac{4}{n\pi}x .\frac{\cos nx}{n} \right |_{0}^{\pi} \\
&=\frac{4}{n^2} \cos n\pi = \frac{(-1)^n .4}{n^2}
\end{align*}$$
Vậy ta có khai triển
$$x^2=\frac{\pi^2}{3}+4\sum_{n=1}^{\infty}(-1)^n.\frac{\cos nx}{n^2}\,\ -\pi \le x \le \pi.$$
Cho $x=\pi$, ta thu được tổng chuỗi số $\displaystyle \sum_{n=1}^{\infty}\frac{1}{n^2}=\frac{\pi^2}{6}.$
_______________________

Với VD2, ta cũng khai triển hàm số $f(x)=x^4$ thành chuỗi Fourier tương tự như trên:
$$a_0=\frac{2}{\pi}\int_{0}^{\pi}x^4=\frac{2}{5} \pi ^4$$
$$a_n=\frac{2}{\pi}\int_{0}^{\pi}x^4 \cos nx dx
= \frac{8 (\pi^2 n^2-6)\cos n\pi}{n^4}$$
Ta được khai triển
$$x^4=\frac{1 }{5}\pi ^4+\sum_{n=1}^{\infty}\frac{8(\pi^2n^2-6)(-1)^n}{n^4}\cos nx
$$
Cho $x=\pi$ ta được
$$\pi^4=\frac{1 }{5}\pi ^4+\sum_{n=1}^{\infty}\frac{8(\pi^2n^2-6)}{n^4}
\Leftrightarrow \frac{4}{5} \pi^4=8\pi^2 \sum_{n=1}^{\infty}\frac{1}{n^2}-48 \sum_{n=1}^{\infty}\frac{1}{n^4}$$
Sử dụng kết quả ở ví dụ 1, thay vào được kết quả $\displaystyle \sum_{n=1}^{\infty}\frac{1}{n^4}=\frac{\pi^2}{90}. $

Carles Puyol 09-05-2012 02:08 AM

1 Attachment(s)
Mọi người có thể tham khảo thêm cuốn này, hồi xưa mình đọc trong lúc làm khóa luận tốt nghiệp, thấy cũng có nhiều chi tiết hay, kiến thức thì không đòi hỏi nhiều, chỉ đòi hỏi tích phân Riemann.

batigoal 09-05-2012 06:43 PM

Ngoài cách dùng chuỗi Fourier của magician_14312 Mấy đẳng thức đầu có thể dùng hàm Zeta để chứng minh [Only registered and activated users can see links. Click Here To Register...].
Đặc biệt kết quả $\sum_{i=1}^{\infty}\frac{1}{i^2}=\frac{\pi }{6}$ trên thế giới người ta đã tìm ra tới 16 cách chứng minh khác nhau.

123456 09-05-2012 08:37 PM

Thử tính
$$\sum_{i=1}^{\infty}\frac{1}{\binom{2i}{i}} =\frac{1}{3}+\frac{2\pi}{9\sqrt{3}}.$$
Đặt $C_n=\frac{1}{\binom{2n}{n}}, n\geq 1$ và $C_0=1$. Xét chuỗi
$$h(x)=\sum_{n=1}^{\infty}\frac{C_n}{2n+1}x^{2n+1} +2.$$
Ta có $h$ là hàm khả vi liên tục trên $(-2,2)$, $h(0)=2$ và
$$h'(x)=\sum_{n=1}^{\infty}C_nx^{2n}.$$
$h'(1)$ là giá trị của chuỗi cần tính. Do
$$C_n=\frac{1}{4}C_{n-1}+\frac{1}{4(2n-1)}C_{n-1},$$
nên
$$h'(x)=\frac{x^2}{4}h'(x)+\frac{x}{4}h(x)+\frac{x ^2-x}{2}$$
hay
\begin{equation}\label{de}
h'(x)(4-x^2)-xh(x)-2(x^2-x)=0.
\end{equation}
Nghiệm của phương trình thuần nhất tương ứng với phuơng trình trên có dạng $\frac{4}{\sqrt{4-x^2}}$, do đó ta tìm nghiệm của phuơng trình dạng $h(x)=\frac{4C(x)}{\sqrt{4-x^2}}$ với điều kiện $h(0)=2$. từ đó tính được $h(1)$ suy ra $h'(1)$.

magician_14312 09-07-2012 10:33 PM

Lời giải cho 3 đẳng thức đầu tiên bằng công cụ là chuỗi số. Vì $0 \le x <1$, ta có:
$$\frac{\sin \pi x}{\pi x}=\prod_{n=1}^{\infty}\left ( 1-\frac{x^2}{n^2} \right )$$
Lấy $\ln$ cẩ 2 vế, ta thu được:
$$\ln \frac{\sin \pi x}{\pi x} =\sum_{n=1}^{\infty}\left ( 1-\frac{x^2}{n^2} \right )$$
Sử dụng khai triển Taylor cho hàm số $\displaystyle \ln(1-z)=-\sum_{m=1}^{\infty}\frac{1}{m}x^m$, có được $\displaystyle \ln(1-\frac{x^2}{n^2})=-\sum_{m=1}^{\infty}\frac{1}{m}\frac{x^{2m}}{n^{2m} }$. Do đó,
$$\sum_{n=1}^{\infty}\ln(1-\frac{x^2}{n^2})=-\sum_{n=1}^{\infty}\sum_{m=1}^{\infty}\frac{1}{m} \frac{x^{2m}}{n^{2m}}$$
Dễ thấy chuỗi kép trên hội tụ, do đó:
$$\begin{align*}
&-\ln\frac{\sin \pi x}{\pi x}=-\sum_{n=1}^{\infty}\left ( 1-\frac{x^2}{n^2} \right )=\sum_{m=1}^{\infty}\left ( \sum_{n=1}^{\infty}\frac{1}{n^{2m}} \right )\frac{x^{2m}}{m}\\
&= x^2.\sum_{n=1}^{\infty} \frac{1}{n^2}+\frac{x^4}{2}.\sum_{n=1}^{\infty} \frac{1}{n^4}+\frac{x^6}{3} \sum_{n=1}^{\infty}\frac{1}{n^6}+... \,\ (1)
\end{align*}$$
Mặt khác, sử dụng khai triển Taylor, ta lại được:
$$\begin{align*}
-\ln \frac{\sin \pi x}{\pi x} &=-\ln\left [ 1-\left ( \frac{\pi^2 x^2}{2!} -\frac{\pi^4 x^4}{4!}+\frac{\pi^6 x^6}{6!}+...\right ) \right ] \\
&= \left ( \frac{\pi^2 x^2}{2!} -\frac{\pi^4 x^4}{4!}+\frac{\pi^6 x^6}{6!}+...\right )+\frac{1}{2}\left ( \frac{\pi^2 x^2}{2!} -\frac{\pi^4 x^4}{4!}+\frac{\pi^6 x^6}{6!}+...\right )^2+...\\
&= \frac{\pi^2}{3!}x^2+\left ( -\frac{\pi^4}{5!} +\frac{\pi^4}{2.(3!)^2}\right )x^4+\left ( \frac{\pi^6}{7}-\frac{\pi^6}{3!.5!}+\frac{\pi^6}{3.(3!)^3} \right )x^6\\
&=\frac{\pi^2 x^2}{6}+\frac{\pi^4 x^4}{180}+\frac{\pi^6 x^6}{2835}+... \,\ (2)
\end{align*}$$
Cho vế trái của (1) và (2) bằng nhau, ta có:
$$\frac{\pi^2 x^2}{6}+\frac{\pi^4 x^4}{180}+\frac{\pi^6 x^6}{2835}+... =x^2 \sum_{n=1}^{\infty}\frac{1}{n^2}+\frac{x^4}{2}\sum _{n=1}^{\infty}\frac{1}{n^4}+\frac{x^6}{3}\sum_{n= 1}^{\infty}\frac{1}{n^6}+...$$
So sánh hệ số của số hạng có chưa $x$, ta thu được các đẳng thức:
$$\sum_{n=1}^{\infty}\frac{1}{n^2}=\frac{\pi^2}{6} , \,\ \sum_{n=1}^{\infty}\frac{1}{n^4}=\frac{\pi^4}{90}, \,\ \sum_{n=1}^{\infty}\frac{1}{n^6}=\frac{\pi^6}{945} .$$


Múi giờ GMT. Hiện tại là 02:12 PM.

Powered by: vBulletin Copyright ©2000-2024, Jelsoft Enterprises Ltd.

[page compression: 12.53 k/13.02 k (3.81%)]