Diễn Đàn MathScope

Diễn Đàn MathScope (http://forum.mathscope.org/index.php)
-   Logic, Tập Hợp, Toán Rời Rạc (http://forum.mathscope.org/forumdisplay.php?f=132)
-   -   Chứng minh với mọi tập hợp A (http://forum.mathscope.org/showthread.php?t=37844)

pega94 17-11-2012 08:23 AM

Chứng minh với mọi tập hợp A
 
Chi $I$ là một tập hợp khác trống. Giả sử với mọi $i\in I$ có một tập hợp $X_i$. Ta gọi ${X_i}_{i\in I}$ là một tập hợp và I là tập chỉ số. Ta đặt::cuoideu: $\cup _{i\in I}X_i=\left \{ y:\exists i\in I sao cho ,y\in X_i\right \}$ và $\bigcup_{i \in I} X_i= \{ y:y\in X_i, \forall i \in I \}$ Chứng minh với mọi tập hợp A: $A\setminus \bigcup_{i\in I}^{X_i} = \bigcap_{i\in I} \left( A \setminus X_i \right)$:beated: :angrybird:

sang89 17-11-2012 10:21 AM

Đây là định luật De Morgan: $C\left( \displaystyle \bigcup_{i \in I} X_i\right) = \displaystyle \bigcap_{i \in I} \left( C(X_i)\right)$

$$ \begin{aligned} x \in C\left( \displaystyle \bigcup_{i \in I} X_i\right) &\Leftrightarrow x \notin \displaystyle \bigcup_{i \in I} X_i \\&\Leftrightarrow x \notin X_i, \: \forall i \in I \\&\Leftrightarrow x \in C(X_i), \: \forall i \in I \\&\Leftrightarrow x \in \displaystyle \bigcap_{i \in I}\left(C (X_i)\right) \end{aligned}$$
Từ đó ta có điều phải chứng minh.

pega94 17-11-2012 10:35 AM

Sẵn chứng minh giùm này luôn nha:
Nếu $f $ là ánh xạ: $X \to Y $ có ánh xạ ngược trái là $g $ và ánh xạ ngược phải là $h $ thì 2 ánh xạ này là duy nhất, kí hiệu $f^{-1} $ là song ánh và $(f^{-1})^{-1}=f $:redeye:

sang89 17-11-2012 10:39 AM

Ngược trái và ngược phải được định nghĩa như thế nào?

pega94 17-11-2012 10:52 AM

Trích:

Nguyên văn bởi sang89 (Post 177092)
Ngược trái và ngược phải được định nghĩa như thế nào?

Hình như thế này.... Cho 2 ánh xạ thì nếu $fog=id_{X}} $ thì lúc này $f $ gọi là ánh xạ ngược trái của $g $ và ngược lại thì $g $ là ánh xạ ngược phải của $f $. Còn $id_{X} $ là ánh xạ đồng nhất $X \to X $ sao cho $x\in X $ thì $f(x)=x $ lúc này gọi $f $ là $id_{X} $
------------------------------
Trích:

Nguyên văn bởi sang89 (Post 177090)
Đây là định luật De Morgan: $C\left( \displaystyle \bigcup_{i \in I} X_i\right) = \displaystyle \bigcap_{i \in I} \left( C(X_i)\right)$

$$ \begin{aligned} x \in C\left( \displaystyle \bigcup_{i \in I} X_i\right) &\Leftrightarrow x \notin \displaystyle \bigcup_{i \in I} X_i \\&\Leftrightarrow x \notin X_i, \: \forall i \in I \\&\Leftrightarrow x \in C(X_i), \: \forall i \in I \\&\Leftrightarrow x \in \displaystyle \bigcap_{i \in I}\left(C (X_i)\right) \end{aligned}$$
Từ đó ta có điều phải chứng minh.

Ah hiểu rồi +_+ tại thấy kí hiệu kì bài dưới làm sao anh:beated:. theo em nghĩ láng mán là thế này....
từ định nghĩa $gof=id_{X} $ và $fog=id_{Y} $ để chứng minh ánh xa này duy nhất phải chứng minh $g=h $,
$g=goid_{Y}=go(foh)=(gof)oh=id_{Y}h=h $, đềiu này chứng tỏa ánh xạ ngược trái và ngược phải trùng nhau:!.... và $gof=id_{X} $ và $fog=id_{Y} $ thì $g $ và$ f $ là ngược nhau, tức là $f^{-1}(y)=x $ hay $f $ song ánh đoạn nữa không biết+_+


Múi giờ GMT. Hiện tại là 06:41 AM.

Powered by: vBulletin Copyright ©2000-2024, Jelsoft Enterprises Ltd.

[page compression: 9.25 k/9.76 k (5.16%)]