Xem bài viết đơn
Old 08-01-2015, 03:03 PM   #28
huynhcongbang
Administrator

 
huynhcongbang's Avatar
 
Tham gia ngày: Feb 2009
Đến từ: Ho Chi Minh City
Bài gởi: 2,413
Thanks: 2,165
Thanked 4,188 Times in 1,381 Posts
Gửi tin nhắn qua Yahoo chát tới huynhcongbang
Dưới đây là bài 1.

a) Với $a=0$, ta có $\left\{ \begin{align}
& {{u}_{1}}=3, \\
& {{u}_{n+1}}=\frac{1}{2}{{u}_{n}}+\frac{1}{4}\sqrt{ u_{n}^{2}+3},n\ge 1 \\
\end{align} \right.$.
Dễ thấy ${{u}_{n}}>0$ với mọi $n.$
Xét hàm số $f(x)=\frac{x}{2}+\frac{1}{4}\sqrt{{{x}^{2}}+3},x> 0$ thì ${f}'(x)=\frac{1}{2}+\frac{x}{4\sqrt{{{x}^{2}}+3}} >0$ nên $f(x)$ là hàm số đồng biến.
Ngoài ra, ${{u}_{2}}=\frac{3}{2}+\frac{\sqrt{{{3}^{2}}+3}}{4 }=\frac{3+\sqrt{3}}{2}<3={{u}_{1}}$ nên bằng quy nạp, ta chứng minh được dãy số này giảm.
Mặt khác, dãy bị chặn dưới bởi 0 nên có giới hạn hữu hạn.
Đặt $L=\lim {{u}_{n}}\ge 0$ thì $L=\frac{1}{2}L+\frac{1}{4}\sqrt{{{L}^{2}}+3} \Leftrightarrow 2L=\sqrt{{{L}^{2}}+3} \Leftrightarrow L=1$.
Vậy giới hạn cần tìm là 1.

b) Với $0\le a\le 1$, xét dãy số ${{x}_{n}},{{y}_{n}}$ lần lượt xác định bởi

$ \left\{ \begin{aligned}
& {{x}_{1}}=3, \\
& {{x}_{n+1}}=\frac{1}{2}{{x}_{n}}+\frac{1}{4}\sqrt{ x_{n}^{2}+3},n\ge 1 \\
\end{aligned} \right. $ và $\left\{ \begin{aligned}
& {{y}_{1}}=3, \\
& {{y}_{n+1}}=\frac{1}{2}{{y}_{n}}+\frac{{{n}^{2}}}{ 4{{n}^{2}}+1}\sqrt{y_{n}^{2}+3},n\ge 1 \\
\end{aligned} \right. $

Do $0\le a\le 1$ nên bằng quy nạp, dễ thấy rằng ${{x}_{n}}\ge {{u}_{n}}\ge {{y}_{n}}$ với mọi $n\ge 1$.
Theo câu $a$, ta đã chứng minh được $\lim {{x}_{n}}=1$.
Ta sẽ chứng minh bằng quy nạp rằng ${{y}_{n}}\ge 1-\frac{2}{n}$ với mọi $n\ge 2$. (*)
Thật vậy, với $n=2$, dễ dàng thấy rằng (*) đúng.

Giả sử $(*)$ đúng với $n$ thì ta có ${{y}_{n}}\ge 1-\frac{2}{n}\ge 0$. Suy ra $$ \dfrac{1}{2}{{y}_{n}}+ \dfrac{{{n}^{2}}}{4{{n}^{2}}+1} \sqrt{y_{n}^{2}+3} \ge \dfrac{1}{2}\left( 1-\frac{2}{n} \right)+ \dfrac{{{n}^{2}}}{4{{n}^{2}}+1} \sqrt{{{\left( 1-\frac{2}{n} \right)}^{2}}+3} . $$ Ta cần chứng minh:

$\dfrac{1}{2} \left( 1-\dfrac{2}{n} \right)+ \dfrac{{{n}^{2}}}{4{{n}^{2}}+1} \sqrt{{{ \left( 1-\dfrac{2}{n} \right)}^{2}}+3} \ge 1-\dfrac{2}{n+1}$
$\Leftrightarrow \dfrac{{{n}^{2}}}{4{{n}^{2}}+1} \sqrt{{{ \left( 1-\dfrac{2}{n} \right)}^{2}}+3} \ge \left( 1-\dfrac{2}{n+1} \right)-\dfrac{1}{2} \left( 1-\dfrac{2}{n} \right) $
$ \Leftrightarrow \dfrac{2n}{4{{n}^{2}}+1} \sqrt{{{n}^{2}}-n+1}\ge \dfrac{{{n}^{2}}-n+2}{2n(n+1)} $
$ \Leftrightarrow 4{{n}^{4}}{{(n+1)}^{2}}({{n}^{2}}-n+1) \ge {{(4{{n}^{2}}+1)}^{2}}{{({{n}^{2}}-n+2)}^{2}}$
$\Leftrightarrow 16{{n}^{4}}{{(n+1)}^{2}}({{n}^{2}}-n+1) \ge {{(4{{n}^{2}}+1)}^{2}}{{({{n}^{2}}-n+2)}^{2}} $

Ta thấy bất đẳng thức trên đúng với $n=1,2,3$, ta xét $n \ge 4$.

Chú ý rằng

$16{{n}^{2}}{{(n+1)}^{2}}\ge {{(4{{n}^{2}}+1)}^{2}} \Leftrightarrow 4n(n+1)\ge 4{{n}^{2}}+1$ đúng và
${{n}^{2}}({{n}^{2}}-n+1)\ge {{({{n}^{2}}-n+2)}^{2}}\Leftrightarrow n{{(n-2)}^{2}}\ge 4$ với mọi $n\ge 4$.

Từ đó ta được ${{x}_{n}}\ge {{u}_{n}}\ge 1-\frac{2}{n}$ đúng với mọi $n$, mà $\lim {{x}_{n}}=\lim \left( 1-\frac{2}{n} \right)=1$ nên ta có $\lim {{u}_{n}}=1$.
[RIGHT][I][B]Nguồn: MathScope.ORG[/B][/I][/RIGHT]
 
__________________
Sự im lặng của bầy mèo

thay đổi nội dung bởi: huynhcongbang, 08-01-2015 lúc 04:01 PM
huynhcongbang is offline   Trả Lời Với Trích Dẫn
The Following 5 Users Say Thank You to huynhcongbang For This Useful Post:
dangvip123tb (09-01-2015), HoangHungChels (09-01-2015), Juliel (08-01-2015), son235 (08-01-2015), thiendieu96 (09-01-2015)
 
[page compression: 12.17 k/13.41 k (9.25%)]