Xem bài viết đơn
Old 04-01-2014, 11:47 AM   #1
huynhcongbang
Administrator

 
huynhcongbang's Avatar
 
Tham gia ngày: Feb 2009
Đến từ: Ho Chi Minh City
Bài gởi: 2,408
Thanks: 2,164
Thanked 4,162 Times in 1,377 Posts
Gửi tin nhắn qua Yahoo chát tới huynhcongbang
[VMO 2014] Bài 5 - Hình học phẳng

Bài 5. (7 điểm)

Cho tam giác nhọn $ABC$ nội tiếp đường tròn $(O)$, trong đó $BC$cố định và $A$ thay đổi trên $(O)$. Trên các tia $AB,AC$ lấy lần lượt các điểm $M$ và $N$ sao cho $MA=MC$ và $NA=NB$. Các đường tròn ngoại tiếp $AMN,ABC$ cắt nhau tại $P$ khác $A$. Đường thẳng $MN$ cắt $BC$ tại $Q$.
a. Chứng minh $A,P,Q$ thẳng hàng.
b. Gọi $D$ là trung điểm $BC$. Các đường tròn có tâm $M,N$ cùng đi qua $A$ cắt nhau tại $K$ khác $A$. Đường thẳng đi qua $A$ và vuông góc với $AK$ cắt $BC$ tại $E$. Đường tròn ngoại tiếp $ADE$ cắt $(O)$ tại $F$ khác $A$. Chứng minh $AF$ đi qua một điểm cố định.
[RIGHT][I][B]Nguồn: MathScope.ORG[/B][/I][/RIGHT]
 
__________________
Sự im lặng của bầy mèo
huynhcongbang is offline   Trả Lời Với Trích Dẫn
The Following 2 Users Say Thank You to huynhcongbang For This Useful Post:
liverpool29 (04-01-2014), thaygiaocht (04-01-2014)
 
[page compression: 8.80 k/10.00 k (12.00%)]