Xem bài viết đơn
Old 03-03-2018, 08:03 PM   #2
NVSH
+Thành Viên+
 
Tham gia ngày: Oct 2017
Bài gởi: 8
Thanks: 1
Thanked 1 Time in 1 Post
Trích:
Nguyên văn bởi Integral View Post
Tính tích phân\[I=\int\limits_0^1 {\sqrt[3]{{2{x^3} - 3{x^2} - x + 1}}} dx.\]
Giả sử $F(x)$ là một nguyên hàm của $f(x)={\sqrt[3]{{2{x^3} - 3{x^2} - x + 1}}}$ khi đó $I=F(1)-F(0)$, xét $g(x)=F(1-x)-F(x)$ có\[\begin{array}{l}
g'\left( x \right) &= - F'\left( {1 - x} \right) - F'\left( x \right)\\
&= - \sqrt[3]{{2{{\left( {1 - x} \right)}^3} - 3{{\left( {1 - x} \right)}^2} - \left( {1 - x} \right) + 1}} - \sqrt[3]{{2{x^3} - 3{x^2} - x + 1}}\\
&= 0.
\end{array}\]Vậy $g(x)$ là hàm hằng, và do đó\[I = g\left( 1 \right) = g\left( {\frac{1}{2}} \right) = F\left( {1 - \frac{1}{2}} \right) - F\left( {\frac{1}{2}} \right) = 0.\]
[RIGHT][I][B]Nguồn: MathScope.ORG[/B][/I][/RIGHT]
 
NVSH is offline   Trả Lời Với Trích Dẫn
 
[page compression: 7.78 k/8.82 k (11.75%)]