Xem bài viết đơn
Old 03-01-2014, 10:10 PM   #20
Traum
Moderator
 
Traum's Avatar
 
Tham gia ngày: Nov 2007
Đến từ: cyber world
Bài gởi: 413
Thanks: 14
Thanked 466 Times in 171 Posts
Câu a: giả sử ta tô màu xanh 24 đỉnh là $1\le a_1 < a_2 < ... <a_{24}\le 103 $. Khi đó đặt $b_i = a_{i+1}-a_{i}\ge 1 $ với $1\le i\le 23 $ và $b_{24} = 103 + a_1 - a_{24}\ge 1 $.
Ta có đẳng thức: $b_1 + b_2 + \cdots+b_{24} = 103 $. Nhận xét rằng số giữa hai điểm xanh $a_i $ và $a_{i+1} $ thì có $b_i-1 $ điểm đỏ và từ $b_i-1 $ điểm đỏ này sẽ cho ta $b_i-2 $ cặp đỏ-đỏ nếu $b_i\ge 2 $ và cho ta 0 cặp đỏ-đỏ nếu $b_i\le 1 $. Do đó nếu có $K $ số $b_i = 1 $ thì có $0\le K\le 23 $ $24-K $ số $b_i\ge 2 $.
Số cặp đỏ là $\sum\limits_{b_i\ge 2}b_i-2 = \sum\limits_{b_i\ge 2}b_i - 2(24-K) = \sum\limits_{b_i\ge 1}b_i - \sum\limits_{b_i=1}b_i -2(24-K) = 103 - K - 2(24-K) = 55 + K $.
Ngược lại với mỗi $0\le K\le 24 $ thì tồn tại $b_1,b_2,...,b_{24} $ thỏa mãn có đúng $K $ số bằng 1 và tổng tất cả bằng 103. Ví dụ $b_{i} = 1 $ với $1\le i\le K $, $b_{i} = 2 $ với $K+1\le i\le 23 $ và $b_{24} = 57+K $. Vậy ta có số cặp đỏ-đỏ và xanh-xanh luôn có dạng $(55+K,K) $ với $0\le K\le 23 $.

Câu b: Trước hết ta tính số cách tô màu các đỉnh xanh thỏa mãn với $a_1 = 1, a_{24} = 103 $. Khi đó ta có $b_1 + b_2 + \cdots +b_{23} = a_{24}-a_{1} = 102 $. Từ điều kiện có đúng 14 cặp xanh-xanh nên ta có trong 23 số $b_i $ có đúng 13 số bằng 1. Số cách chọn $13 $ số này là $\binom{23}{13} = \binom{23}{10} $. Số cách chọn 10 số còn lại là $\binom{102-23-1}{10-1} = \binom{78}{9} $.

Lại có với mỗi cách tô màu sao cho có 14 cặp xanh-xanh thì bằng cách xoay quanh tâm ta có có đúng 14 cách tô màu sao cho $a_1=1,a_{24} = 103 $. Việc còn lại là chứng minh với mọi cách tô thì việc quay quanh tâm không trùng với chính nó. Giả sử ngược lại thì ta có tồn lại các số nguyên dương $1\le l \le 102 $ sao cho hai tập $X = \{a_1,a_2,\dots a_{24}\} $ và $Y = \{a_1+l,a_2 + l,...,a_{24} + l\} \pmod {103} $ trùng nhau. Khi đó ta có $\sum\limits_{i=1}^{24}(a_i + l)\equiv \sum\limits_{i=1}^{24}a_i \pmod {103} $ suy ra $24l\equiv 0\pmod {103} $. Điều này không xảy ra với $1\le l\le 102 $.

Từ tất cả nhận xét trên thì số cách tô màu thỏa mãn bài toán là: $\frac{\binom{23}{10}\binom{78}{9}}{14} = \frac{\binom{23}{9}\binom{78}{9}}{10} = \frac{\binom{24}{10}\binom{78}{9}}{24} $
[RIGHT][I][B]Nguồn: MathScope.ORG[/B][/I][/RIGHT]
 
__________________
Traum is giấc mơ.

thay đổi nội dung bởi: Traum, 03-01-2014 lúc 10:24 PM
Traum is offline   Trả Lời Với Trích Dẫn
The Following 3 Users Say Thank You to Traum For This Useful Post:
hoangqnvip (03-01-2014), huynhcongbang (03-01-2014), quocbaoct10 (03-01-2014)
 
[page compression: 10.43 k/11.60 k (10.16%)]