Diễn Đàn MathScopeDiễn Đàn MathScope
  Diễn Đàn MathScope
Ghi Danh Hỏi/Ðáp Thành Viên Social Groups Lịch Ðánh Dấu Ðã Ðọc

Go Back   Diễn Đàn MathScope > Sơ Cấp > Việt Nam và IMO > 2013

News & Announcements

Ngoài một số quy định đã được nêu trong phần Quy định của Ghi Danh , mọi người tranh thủ bỏ ra 5 phút để đọc thêm một số Quy định sau để khỏi bị treo nick ở MathScope nhé !

* Nội quy MathScope.Org

* Một số quy định chung !

* Quy định về việc viết bài trong diễn đàn MathScope

* Nếu bạn muốn gia nhập đội ngũ BQT thì vui lòng tham gia tại đây

* Những câu hỏi thường gặp

* Về việc viết bài trong Box Đại học và Sau đại học


Ðề tài đã khoá Gởi Ðề Tài Mới
 
Ðiều Chỉnh Xếp Bài
Old 10-01-2013, 08:12 PM   #1
n.v.thanh
Moderator
 
n.v.thanh's Avatar
 
Tham gia ngày: Nov 2009
Bài gởi: 2,849
Thanks: 2,981
Thanked 2,534 Times in 1,008 Posts
Kỳ Thi Chọn HSGQG Môn Toán 2013 - Đề thi



Đến hẹn lại lên, ngày mai và ngày kia VMO 2013 sẽ bắt đầu diễn ra trên cả nước. Cũng như năm mới mình lập ra 1 series topic xung quanh các kì thi VMO, TST, IMO.



Topic này lập ra chỉ để chứ duy nhất đề thi ngày 1 và ngày 2. Mọi chi tiết thảo luận về các bài toán các bạn click vào số thứ tự của bài toán, các vấn đề xung quanh cũng như tán chuyện thì đã có topic [Only registered and activated users can see links. ]


Chúc các bạn hoàn thành thật tốt kì thi !


[RIGHT][I][B]Nguồn: MathScope.ORG[/B][/I][/RIGHT]
 

thay đổi nội dung bởi: n.v.thanh, 10-01-2013 lúc 09:13 PM
n.v.thanh is offline  
The Following 2 Users Say Thank You to n.v.thanh For This Useful Post:
hoang_kkk (10-01-2013), TNP (11-01-2013)
Old 10-01-2013, 08:23 PM   #2
n.v.thanh
Moderator
 
n.v.thanh's Avatar
 
Tham gia ngày: Nov 2009
Bài gởi: 2,849
Thanks: 2,981
Thanked 2,534 Times in 1,008 Posts
KỲ THI CHỌN HỌC SINH GIỎI QUỐC GIA THPT NĂM 2012

-------- Ngày thi thứ nhất-------------


Thời gian 180 phút

[Only registered and activated users can see links. ] (5 điểm).Giải hệ phương trình sau:
$$\left\{ \begin{align}
& \sqrt{{{\sin }^{2}}x+\frac{1}{{{\sin }^{2}}x}}+\sqrt{{{\cos }^{2}}y+\frac{1}{{{\cos }^{2}}y}}=\sqrt{\frac{20y}{x+y}} \\
& \sqrt{{{\sin }^{2}}y+\frac{1}{{{\sin }^{2}}y}}+\sqrt{{{\cos }^{2}}x+\frac{1}{{{\cos }^{2}}x}}=\sqrt{\frac{20x}{x+y}} \\
\end{align} \right.$$

[Only registered and activated users can see links. ] (5 điểm). Cho dãy số xác định như sau:
$$\left\{ \begin{align}
& {{a}_{1}}=1 \\
& {{a}_{n+1}}=3-\frac{{{a}_{n}}+2}{{{2}^{{{a}_{n}}}}} \\
\end{align} \right.,\forall n\ge 1$$
Chứng minh dãy số có giới hạn và tìm giới hạn đó

[Only registered and activated users can see links. ](5 điểm) .Cho tam giác không cân $ABC$. Kí hiệu $(I)$ là đường tròn tâm $I$ nội tiếp tam giác $ABC$ và $D,E,F$ là các tiếp điểm của $(I)$ với $BC,CA,AB$. Đường thẳng qua $E$ vuông góc $BI$ cắt $(I)$ tại $K$ khác $E$, đường thẳng qua $F$ vuông góc $CI$ cắt $(I)$ tại $L$ khác $F$. Gọi $J$ là trung điểm $KL$.
a) Chứng minh $D,I,J$ thẳng hàng
b) Giả sử $B,C$ cố định, $A$ thay đổi sao cho tỷ số $\frac{AB}{AC}=k$ không đổi. Gọi $M,N$ tương ứng là các giao điểm $IE, IF$ với $(I)$ ($M$ khác $E$, $N$ khác $F$). $MN$ cắt $IB, IC$ tại $P,Q$. Chứng minh đường trung trực $PQ$ luôn qua 1 điểm cố định

[Only registered and activated users can see links. ] (5 điểm). . Cho trước một số số tự nhiên được viết trên một đường thẳng. Ta thực hiện các bước điền số lên đường thẳng như sau: tại mỗi bước, trước tiên xác định tất cả các cặp số kề nhau hiện có trên đường thẳng theo thứ tự từ trái qua phải, sau đó điền vào giữa mỗi cặp một số bẳng tổng của hai số thuộc cặp đó. Hỏi sau $2013$ bước, số $2013$ xuất hiện bao nhiêu lần trên đường thẳng trong các trường hợp sau:
a) Các số cho trước là: $1$ và $1000$?
b) Các số cho trước là: $1,2,...,1000$ và được xếp theo thức tự tăng dần từ trái qua phải?
[RIGHT][I][B]Nguồn: MathScope.ORG[/B][/I][/RIGHT]
 
Hình Kèm Theo
Kiểu File : jpg VMO Day 1.jpg (106.5 KB, 48 lần tải)

thay đổi nội dung bởi: n.v.thanh, 12-01-2013 lúc 11:32 AM
n.v.thanh is offline  
The Following 3 Users Say Thank You to n.v.thanh For This Useful Post:
kimlinh (11-01-2013), tffloorz (11-01-2013), TNP (11-01-2013)
Old 10-01-2013, 08:25 PM   #3
n.v.thanh
Moderator
 
n.v.thanh's Avatar
 
Tham gia ngày: Nov 2009
Bài gởi: 2,849
Thanks: 2,981
Thanked 2,534 Times in 1,008 Posts
KỲ THI CHỌN HỌC SINH GIỎI QUỐC GIA THPT NĂM 2012

-------- Ngày thi thứ hai -------------


Thời gian 180 phút

[Only registered and activated users can see links. ] (7 điểm).Tìm tất cả hàm số $f:\mathbb{R}\to \mathbb{R}$ thỏa $f\left( 0 \right)=0;f\left( 1 \right)=2013$ và
$$\left( x-y \right)\left( f\left( {{f}^{2}}\left( x \right) \right)-f\left( {{f}^{2}}\left( y \right) \right) \right)=\left( f\left( x \right)-f\left( y \right) \right)\left( {{f}^{2}}\left( x \right)-{{f}^{2}}\left( y \right) \right)$$ đúng với mọi $x,y\in \mathbb{R}$, trong đó ${{f}^{2}}\left( x \right)={{\left( f\left( x \right) \right)}^{2}}$


[Only registered and activated users can see links. ] (7 điểm).Cho tam giác nhọn $ABC$ nội tiếp $(O)$ và $D$ thuộc cung $BC$ không chứ điểm $A$. Đường thẳng $\vartriangle $ thay đổi đi qua trực tâm $H$ của tam giác $ABC$ cắt đướng tròn ngoại tiếp tam giác $ABH, ACH$ tại $M,N$ ($M,N$ khác $H$)
a)Xác định vị trí của đường thẳng $\vartriangle $ để diện tích tam giác $AMN$ lớn nhất
b)Kí hiệu $d_1$ là đường thẳng qua $M$ vuông góc $DB, d_2$ là đường thẳng qua $N$ vuông góc $DC$. Chứng minh giao điểm $P$ của $d_1$ và $d_2$ luôn thuộc 1 đường tròn cố định


[Only registered and activated users can see links. ] (6 điểm).Tìm tất cả bộ sắp thứ tự $\left( a,b,c,{{a}^{'}},{{b}^{'}},{{c}^{'}} \right)$ thỏa
$$\left\{ \begin{align}
& ab+{{a}^{'}}{{b}^{'}}\equiv 1\left( \bmod 15 \right) \\
& ac+{{a}^{'}}{{c}^{'}}\equiv 1\left( \bmod 15 \right) \\
& bc+{{b}^{'}}{{c}^{'}}\equiv 1\left( \bmod 15 \right) \\
\end{align} \right.$$
Với $a,b,c,{{a}^{'}},{{b}^{'}},{{c}^{'}}\in \left\{ 0,1...14 \right\}$


------------ Hết ------------

[RIGHT][I][B]Nguồn: MathScope.ORG[/B][/I][/RIGHT]
 

thay đổi nội dung bởi: n.v.thanh, 12-01-2013 lúc 11:30 AM
n.v.thanh is offline  
Ðề tài đã khoá Gởi Ðề Tài Mới

Bookmarks

Ðiều Chỉnh
Xếp Bài

Quuyền Hạn Của Bạn
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is Mở
Smilies đang Mở
[IMG] đang Mở
HTML đang Tắt

Chuyển đến


Múi giờ GMT. Hiện tại là 09:19 PM.


Powered by: vBulletin Copyright ©2000-2018, Jelsoft Enterprises Ltd.
Inactive Reminders By mathscope.org
[page compression: 53.06 k/58.54 k (9.36%)]