Diễn Đàn MathScopeDiễn Đàn MathScope
  Diễn Đàn MathScope
Ghi Danh Hỏi/Ðáp Thành Viên Social Groups Lịch Ðánh Dấu Ðã Ðọc

Go Back   Diễn Đàn MathScope > Sơ Cấp > Giải Tích

News & Announcements

Ngoài một số quy định đã được nêu trong phần Quy định của Ghi Danh , mọi người tranh thủ bỏ ra 5 phút để đọc thêm một số Quy định sau để khỏi bị treo nick ở MathScope nhé !

* Nội quy MathScope.Org

* Một số quy định chung !

* Quy định về việc viết bài trong diễn đàn MathScope

* Nếu bạn muốn gia nhập đội ngũ BQT thì vui lòng tham gia tại đây

* Những câu hỏi thường gặp

* Về việc viết bài trong Box Đại học và Sau đại học


Trả lời Gởi Ðề Tài Mới
 
Ðiều Chỉnh Xếp Bài
Old 09-04-2015, 08:30 PM   #1
Juliel
+Thành Viên+
 
Tham gia ngày: Sep 2013
Đến từ: THPT Chuyên Lương Thế Vinh, Biên Hoà, Đồng Nai
Bài gởi: 144
Thanks: 109
Thanked 130 Times in 66 Posts
Một bài giới hạn.

Cho $a\in \left ( \dfrac{1}{2},1 \right )$ và dãy số $(a_n)$ xác định bởi $a_1=a$ ; $a_n=\dfrac{2015}{2014}sina_{n-1},\;\forall n\geq 2$. Xét dãy số $(b_n)$ :
$b_1=a$ và $b_n=\dfrac{a_n+b_{n-1}}{1+a_nb_{n-1}},\;\forall n$
Chứng minh dãy $(b_n)$ có giới hạn hữu hạn và tính giới hạn này.
[RIGHT][I][B]Nguồn: MathScope.ORG[/B][/I][/RIGHT]
 
Juliel is offline   Trả Lời Với Trích Dẫn
The Following User Says Thank You to Juliel For This Useful Post:
thaygiaocht (29-04-2015)
Old 21-01-2016, 07:13 PM   #2
tikita
Administrator

 
Tham gia ngày: Jun 2012
Bài gởi: 157
Thanks: 2
Thanked 83 Times in 53 Posts
Trích:
Nguyên văn bởi Juliel View Post
Cho $a\in \left ( \dfrac{1}{2},1 \right )$ và dãy số $(a_n)$ xác định bởi $a_1=a$ ; $a_n=\dfrac{2015}{2014}sina_{n-1},\;\forall n\geq 2$. Xét dãy số $(b_n)$ :
$b_1=a$ và $b_n=\dfrac{a_n+b_{n-1}}{1+a_nb_{n-1}},\;\forall n$
Chứng minh dãy $(b_n)$ có giới hạn hữu hạn và tính giới hạn này.
Cách giải tóm lược:
  • Đầu tiên ta chứng minh được $\dfrac{2015}{2014}\sin x<x,\forall x\in(\dfrac{1}{2};1)$ và phương trình $\dfrac{2015}{2014}\sin x=x$ có một nghiệm dương là $\alpha\in (0,1)$. Từ đây suy ra dãy $(a_n)$ là một dãy giảm và có giới hạn là $\alpha$.
  • Bằng quy nạp, ta chứng minh được $(b_n)$ là một dãy tăng và bị chặn trên bởi $1$. Từ đây suy ra $\lim b_n=1$.

[RIGHT][I][B]Nguồn: MathScope.ORG[/B][/I][/RIGHT]
 
tikita is offline   Trả Lời Với Trích Dẫn
The Following User Says Thank You to tikita For This Useful Post:
2M (21-01-2016)
Trả lời Gởi Ðề Tài Mới

Bookmarks

Ðiều Chỉnh
Xếp Bài

Quuyền Hạn Của Bạn
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is Mở
Smilies đang Mở
[IMG] đang Mở
HTML đang Tắt

Chuyển đến


Múi giờ GMT. Hiện tại là 10:27 PM.


Powered by: vBulletin Copyright ©2000-2018, Jelsoft Enterprises Ltd.
Inactive Reminders By mathscope.org
[page compression: 41.53 k/45.73 k (9.17%)]