Diễn Đàn MathScopeDiễn Đàn MathScope
  Diễn Đàn MathScope
Ghi Danh Hỏi/Ðáp Thành Viên Social Groups Lịch Ðánh Dấu Ðã Ðọc

Go Back   Diễn Đàn MathScope > Sơ Cấp > Đại Số và Lượng Giác > Chuyên Đề

News & Announcements

Ngoài một số quy định đã được nêu trong phần Quy định của Ghi Danh , mọi người tranh thủ bỏ ra 5 phút để đọc thêm một số Quy định sau để khỏi bị treo nick ở MathScope nhé !

* Nội quy MathScope.Org

* Một số quy định chung !

* Quy định về việc viết bài trong diễn đàn MathScope

* Nếu bạn muốn gia nhập đội ngũ BQT thì vui lòng tham gia tại đây

* Những câu hỏi thường gặp

* Về việc viết bài trong Box Đại học và Sau đại học


Trả lời Gởi Ðề Tài Mới
 
Ðiều Chỉnh Xếp Bài
Old 10-11-2007, 06:31 PM   #1
chien than
+Thành Viên+
 
chien than's Avatar
 
Tham gia ngày: Nov 2007
Đến từ: Toán 1 K41 trường THPT chuyên ĐHSP Hà Nội
Bài gởi: 138
Thanks: 1
Thanked 113 Times in 53 Posts
Gửi tin nhắn qua Yahoo chát tới chien than
Định lý SID-CID

[Only registered and activated users can see links. ]
Tác giả: Phạm Kim Hùng
Since this following theorems are useful to solve recent problem, I decide to share them for every Mathlinkers from my book. Detailed feature and more applications will be shown in this book published in Gil 2007 (IMO). Notice that this is not in Vietnamese version of 2006.

Theorem 1.
Suppose that F is a homogeneous symmetric polynomial of n variables $x_{1},x_{2},...,x_{n} such that \deg f\le 3 $. Prove that the inequality $F(x_{1},x_{2},...,x_{n})\ge 0 $ holds if and only if

$F(1,0,0,...,0) \ge 0 \ ; \ F(1,1,0,0,...,0) \ge 0 \ ; \ F(1,1,1,...,1,0) \ge 0 \ ; \ F(1,1,1,...,1) \ge 0 \ ; $

Proof.
We denote $t=\frac{x_{1}+x_{2}}{2},x=x_{1},y=x_{2} $ and

$F=a\sum_{i=1}^{n}x_{i}^{3}+b\sum_{i<j}^{n}x_{i}x_{ j}(x_{i}+x_{j})+c\sum_{i<j<k}x_{i}x_{j}x_{k}\ ; $

Denote

$A=\sum_{i=3}^{n}x_{j}\ ; \ B=\sum_{i=3}^{n}x_{j}^{2}\ ; C=\sum_{2<i<j}x_{i}x_{j}\ ; $

We have

$F(x_{1},x_{2},...,x_{n})-F(2t,0,x_{3},...,x_{n}) $


$=a\left(x^{3}+y^{3}-(x+y)^{3}\right)+bxy(x+y)+b\left(x^{2}+y^{2}-(x+y)^{2}\right)A+xyA $


$=xy\left(-3a(x+y)+b(x+y)-2bA+A\right) \ ; $

and, alternatively, we have

$F(x_{1},x_{2},...,x_{n})-F(t,t,x_{3},...,x_{n}) $


$=a\left(x^{3}+y^{3}-\frac{(x+y)^{3}}{4}\right)+b(x+y)\left(xy-\frac{(x+y)^{2}}{4}\right) $


$+b\left(x^{2}+y^{2}-\frac{(x+y)^{2}}{2}\right)A+A\left(xy-\frac{(x+y)^{2}}{4}\right) $


$=\frac{(x-y)^{2}}{4}\left(3a(x+y)+-b(x+y)+2bA-A\right) \ ; $

According to two above relationships, we may conclude that at least one the two following inequalities hold

$F(x_{1},x_{2},...,x_{n})\ge F(2t,0,x_{3},...,x_{n}) \ \mbox{ \ or }F(x_{1},x_{2},...,x_{n})\ge F(t,t,x_{3},...,x_{n}) \ ; $

Let $t=\frac{1}{n}(x_{1}+x_{2}+...+x_{n}) $. According to UMV theorem (AC theorem), we conclude that the inequality $F(x_{1},x_{2},...,x_{n})\ge 0 $ holds if and only if

$F(t,0,0,...,0) \ge 0 \ ; \ F(t,t,0,0,...,0) \ge 0 \ ; \ F(t,t,t,...,t,0) \ge 0 \ ; \ F(t,t,t,...,t) \ge 0 \ ; $

Since the inequality is homogeneous, we have the desired result immediately.

Theorem 2. ("Symmetric inequality of Degree 3" theorem - SID theorem)
Consider the following symmetric expression (not necessarily homogeneous)

$F=a\sum_{i=1}^{n}x_{i}^{3}+b\sum_{i<j}x_{i}x_{j}(x _{i}+x_{j})+c\sum_{i<j<k}x_{i}x_{j}x_{k}+d\sum_{i= 1}^{n}x_{i}^{2}+e\sum_{i<j}x_{i}x_{j}+f\sum_{i=1}^ {n}x_{i}+g. $

For $t=x_{1}+x_{2}+...+x_{n} $, the inequality $F\ge 0 $ holds for all non-negative real numbers $x_{1},x_{2},...,x_{n} $ if and only if

$F\left(\frac{t}{n},0,...,0\right) \ge 0 ; \ $ $F\left(\frac{t}{n},\frac{t}{n},0,...,0\right) \ge 0\ ;\ $ $F\left(\frac{t}{n},\frac{t}{n},...,\frac{t}{n},0\r ight) \ ; \ $ $F\left(\frac{t}{n},\frac{t}{n},...,\frac{t}{n}\rig ht) \ge 0 \ ; $

Proof.
We will fix the sum $x_{1}+x_{2}+...+x_{n}=t=const $ and prove that the inequality $F\ge 0 $ holds for all $t> 0 $. Indeed, we can rewrite the expression F to (with the assumption that $x_{1}+x_{2}+...+x_{n}=t $)

$F=a\sum_{i=1}^{n}x_{i}^{3}+b\sum_{i<j}x_{i}x_{j}(x _{i}+x_{j})+c\sum_{i<j<k}x_{i}x_{j}x_{k}+ $


$+\left(\sum_{i=1}^{n}x_{i}\right)\left(\frac{d}{t} \sum_{i=1}^{n}x_{i}^{2}+\frac{e}{t}\sum_{i<j}x_{i} x_{j}\right) $


$+\frac{f}{t^{2}}\left(\sum_{i=1}^{n}x_{i}\right)^{ 2}\left(\sum_{i=1}^{n}x_{i}\right)+\frac{g}{t^{3}} \left(\sum_{i=1}^{n}x_{i}\right)^{3}. $

Notice that in this expression, t is an constant. Since this representation of F is symmetric and homogeneous, we may conclude that F\ge 0 if and only if (according to the above proposition)
$F\left(\frac{t}{n},0,...,0\right) \ge 0 ; \ F\left(\frac{t}{n},\frac{t}{n},0,...,0\right) \ge 0\ ;\ F\left(\frac{t}{n},\frac{t}{n},...,\frac{t}{n},0\r ight) \ ; \ F\left(\frac{t}{n},\frac{t}{n},...,\frac{t}{n}\rig ht) \ge 0 \ ; $

and the desired result follows.

Comment. Second volume can proved by UMV theorem, but I use another proof (as an idea of a member in Mathlinks) since I think it is original.
[RIGHT][I][B]Nguồn: MathScope.ORG[/B][/I][/RIGHT]
 
chien than is offline   Trả Lời Với Trích Dẫn
The Following 4 Users Say Thank You to chien than For This Useful Post:
DHN_LQD (04-12-2008), mathismylove94 (02-08-2011), Trànvănđức (03-03-2013), unnamestar (29-08-2009)
Trả lời Gởi Ðề Tài Mới

Bookmarks

Ðiều Chỉnh
Xếp Bài

Quuyền Hạn Của Bạn
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is Mở
Smilies đang Mở
[IMG] đang Mở
HTML đang Tắt

Chuyển đến


Múi giờ GMT. Hiện tại là 05:16 AM.


Powered by: vBulletin Copyright ©2000-2024, Jelsoft Enterprises Ltd.
Inactive Reminders By mathscope.org
[page compression: 41.25 k/44.19 k (6.64%)]