Diễn Đàn MathScopeDiễn Đàn MathScope
  Diễn Đàn MathScope
Ghi Danh Hỏi/Ðáp Thành Viên Social Groups Lịch Ðánh Dấu Ðã Ðọc

Go Back   Diễn Đàn MathScope > Sơ Cấp > Đại Số và Lượng Giác > Chuyên Đề

News & Announcements

Ngoài một số quy định đã được nêu trong phần Quy định của Ghi Danh , mọi người tranh thủ bỏ ra 5 phút để đọc thêm một số Quy định sau để khỏi bị treo nick ở MathScope nhé !

* Nội quy MathScope.Org

* Một số quy định chung !

* Quy định về việc viết bài trong diễn đàn MathScope

* Nếu bạn muốn gia nhập đội ngũ BQT thì vui lòng tham gia tại đây

* Những câu hỏi thường gặp

* Về việc viết bài trong Box Đại học và Sau đại học


Trả lời Gởi Ðề Tài Mới
 
Ðiều Chỉnh Xếp Bài
Old 10-11-2007, 06:32 PM   #1
chien than
+Thành Viên+
 
chien than's Avatar
 
Tham gia ngày: Nov 2007
Đến từ: Toán 1 K41 trường THPT chuyên ĐHSP Hà Nội
Bài gởi: 138
Thanks: 1
Thanked 113 Times in 53 Posts
Gửi tin nhắn qua Yahoo chát tới chien than
Phương Pháp "bán Schur- bán SOS"

tác giả:10 math
From VIF
Khi đứng trước một bài bđt đối xứng hoặc hoán vị th“ phương pháp hay được sử dụng nhất là phương pháp SOS v“ nó thực sự hiệu quả với các bài bđt 3 biến . Tuy nhiên đối với các bạn chưa làm quen được với phương pháp SOS th“ việc đưa được về dạng chính tắc của phương pháp SOS và xác định tiêu chuẩn của nó là một việc không hề đơn giản .Chính v“ vậy bài viết này tôi sẽ xin đưa ra một phương pháp đã được áp dụng trong một số bài viết của diễn đàn "phương pháp bán Schur-bán SOS". Hẳn các bạn sẽ tự hỏi tại sao nó có cái tên như vậy ? Câu trả lời sẽ được t“m thấy qua ví dụ mở đầu sau , một bđt quen thuộc , bđt Schur:

Ví dụ 1 : ( bđt Schur) Với các số thực a,b, c không âm bất k“ ta luôn có :
$ a^{3} + b^{3} + c^{3}+3abc \geq ab(a+b) + bc(b+c) + ac(a+c) $
Giải:
Không mất tính tổng quát ta giả sử c = min(a,b,c). Sử dụng khai triển :
$ a^{3} + b^{3} + c^{3} - 3abc = (a+b+c)[ (a-b)^{2} + (a-c)(b-c)} $
$ ab(a+b) + bc(b+c) + ac(a+c) - 6abc = 2c(a-b)^{2} + (a+b)(a-c)(b-c) $
Do đó bđt đã cho có thể được viết dưới dạng $(a + b - c)(a-b)^{2} + c(a-c)(b-c) \geq 0 $
Với $c = min (a,b,c) $ nên bđt trên hiển nhiên đúng $\Rightarrow $ ta có điều phải CM
Đẳng thức xảy ra khi $a=b=c ; a=b , c=0 $ : hoặc các hoán vị

Ví dụ 2 ( mathlinks contests)
Chứng minh bđt sau với hệ số a,b,c dương
$ \frac{a+b}{a+c} + \frac{a+c}{b+c} + \frac{b+c}{b+a} \leq \frac{a}{b} + \frac{b}{c} + \frac{c}{a} $
Giải:
Không mất tính tổng quát ta giả sử c= min (a,b,c);
Ta có khai triển :
$ \frac{x}{y} + \frac{y}{z} + \frac{z}{x} - 3 = \frac{(x-y)^{2}}{xy} + \frac{(x-z)(y-z)}{xz} $
( Cái này các bạn có thể dễ dàng phân tích được
Do đó bđt trên có thể viết lại dưới dạng:
$[ \frac{1}{ab}- \frac{1}{(a+c)(b+c)}](a-b)^{2} + [ \frac{1}{ac} - \frac{1}{(a+c)(a+b)}](a-c)(b-c) \geq 0 $
Bđt trên hiển nhiên đúng
Đẳng thức xảy ra $ \Leftrightarrow $ a=b=c

Lời giải hai ví dụ trên không phải là duy nhất và còn có nhiều cách chứng minh độc đáo hơn Nhưng nếu xem khách quan th“ nó hoàn toàn tự nhiên và cơ bản . Nói khái quat khi đứng trước một bđt bất k“ của 3 bến a,b,c ta sẽ t“m cách đưa chúng về dạng 'bán Schur- bán SOS" : $(a-b)^{2} $, $(a-b)(b-c) $
$f(a,b,c)= M(a-b)^{2} + N(a-b)(b-c) \geq 0 $
Sau đó với giả thiết $c = max (min) (a,b,c) $ ta sẽ CM được $M,N \geq 0 $
Từ đó ta có điều cần CM

Sau đây là một số khai triển thường được sử dụng trong phân tích:

1.$ a^{2} + b^{2} + c^{2} - ab - bc- ac = (a-b)^{2} +(a-c)(b-c) $
2.$ \frac{a}{b} + \frac{b}{c} + \frac{c}{a} -3 = \frac{(a-b)^{2}}{ab} + \frac{(a-c)(b-c)}{ac} $
3.$ a^{3} + b^{3} + c^{3} - 3abc = (a+b+c)[(a-b)^{2} +(a-c)(b-c)] $
4.$ (a+b)(b+c)(c+a)- 8abc = 2c(a-b)^{2} + (a+b)(a-c)(b-c) $
5.$ \frac{a}{b+c}+ \frac{b}{a+c} + \frac{c}{a+b} - \frac{3}{2} = \frac{(a-b)^{2}}{(a+c)(c+b)} + \frac{a+b+2c}{2(a+b)(b+c)(a+c)}(a-c)(b-c) $
6.$ \frac{a+kb}{a+kc}+ \frac{b+kc}{b+ka} + \frac{c+ka}{c+kb} - 3 = \frac{k^2.(a-b)^{2}}{(c+ka)(c+kb)} + \frac{k(a-c)(b-c)[(k^2-k+1).a +(k-1)b+kc]}{(a+kb)(b+ka)(c+kb)} $
[RIGHT][I][B]Nguồn: MathScope.ORG[/B][/I][/RIGHT]
 
chien than is offline   Trả Lời Với Trích Dẫn
The Following 13 Users Say Thank You to chien than For This Useful Post:
alltheright (09-03-2010), cuong_kimvan (27-03-2009), Franky.eco (03-02-2010), HocKoGioi (15-06-2012), huynhcongbang (20-09-2010), JohnnyCage (28-03-2009), mnnn (13-11-2010), napoleon_tn (03-04-2009), pentapro1993 (10-04-2009), stoan94 (27-09-2009), unnamestar (29-08-2009), vanthanh0601 (30-07-2012), ziks0ck (21-08-2010)
Old 10-11-2007, 06:33 PM   #2
chien than
+Thành Viên+
 
chien than's Avatar
 
Tham gia ngày: Nov 2007
Đến từ: Toán 1 K41 trường THPT chuyên ĐHSP Hà Nội
Bài gởi: 138
Thanks: 1
Thanked 113 Times in 53 Posts
Gửi tin nhắn qua Yahoo chát tới chien than
Bây giờ sẽ là một số ví dụ cụ thể để CM tính hiệu qủa của phương pháp này

Ví dụ 3 Cho a,b,c $ \geq $ 0 . CMR
$ \sum_{cyc}\frac{(a+b)^{2}}{(b+c)^{2}} + \frac{2abc}{a^{3}+b^{3} + c^{3}} $$ \geq \frac{11}{3} $
Giải :

Giả sử $c = max (a,b,c) $
Với $x,y,z $ bất kì ta có khai triển sau
$\sum_{cyc }\frac{x^{2}}{y^{2}} - 3 =\frac{(x+y).(x-y)^{2}}{x^{2}y^{2}} +\frac{(x+y)(y+z)(x-z)(y-z)}{x^{2}z^{2}} $
Ta đưa bđt trên thức về dạng
$(\frac{(a+b+2c)^{2}}{(a+b)^{2}(b+c)^{2}} - \frac{2(a+b+c)}{3(a^{3}+b^{3}+c^{3})})(a-b)^{2} = [\frac{(a+2b+c)(2a+b+c)}{(a+b)^{2}(a+c)^{2}} - \frac{2(a+b+c)}{3(a^{3}+b^{3}+c^{3})} ](a-c)(b-c) \geq 0 $
Theo bdt Chebyshev ta có : $3(a^{3}+b^{3}+c^{3}) \geq (a^{2}+b^{2}+c^{2})(a+b+c) $
Có $c= max(a,b,c); $
$ \Rightarrow \frac{(a+2b+c)(b+2a+c)}{(a+b)^{2}(a+c)^{2}} \geq \frac{4(a+b)^{2}}{(a+b)^{2}(a+c)^{2}} \geq \frac{2}{a^{2}+c^{2}} \geq \frac{2}{a^{2}+b^{2}+c^{2}} \geq \frac{2(a+b+c)}{3(a^{3}+b^{3}+c^{3})} $ (1)
Đồng thời ta cũng có:
$ \frac{(a+b+2c)^{2}}{(a+c)^{2}(b+c)^{2}} \geq \frac{4}{(a+c)(b+c)} $
Ta cần chứng minh rằng $\frac{2}{(a+c)(b+c)} \geq \frac {1}{a^{2}+b^{2}+c^{2}} $ (*)
Thật vậy : (*)$ \Leftrightarrow 2(a^{2}+b^{2}+c^{2}) \geq ab+bc+ac + c^{2} $
$ \Leftrightarrow (a^{2}+b^{2}+c^{2}) + a^{2}+b^{2} \geq (ab+bc+ca) $ (hiển nhiên đúng )
$ \Rightarrow \frac{(a+b+2c)^{2}}{(a+c)^{2}(b+c)^{2}} \geq \frac{2}{ a^{2}+b^{2}+c^{2}} \geq \frac{2(a+b+c)}{3(a^{3}+b^{3}+c^{3})} $ (2)

Từ (1) và (2) ta có điều cần CM
Đẳng thức xảy ra $ \Leftrightarrow $$a=b=c $

Ví dụ 4 (Nguyễn Văn Thạch) Cho $a,b,c >0 $ CMR:
$\sum_{cyc}\frac{a^{2}}{b^{2}} + 8\frac{( ab+bc+ca)}{a^{2}+b^{2}+c^{2}} \geq 11 $
Giải:
Giả sử $c= min(a.b.c) $
Ta đưa bdt trên về dạng
$[\frac{(a+b)^{2}}{a^{2}b^{2}} - \frac{8}{a^{2}+b^{2}+c^{2}}](a-b)^{2} + [\frac{(a+c)(b+c)}{a^{2}c^{2}} -\frac{8}{a^{2}+b^{2}+c^{2}}](a-c)(b-c) \geq 0 $
Có $\frac{(a+b)^{2}}{a^{2}b^{2}} = (\frac{1}{a}+\frac{1}{b})^{2} \geq \frac{16}{(b+c)^{2}} \geq \frac{8}{a^{2}+b^{2}} \geq{8}{a^{2}+b^{2}+c^{2}} $
Mà $c=min(a,b,c) $
$ \Rightarrow (a+c)(b+c)(a^{2}+b^{2}+c^{2}) \geq 2 \sqrt[2]{ac}.2c(a^{2}+2c^{2} )=4c\sqrt[2]{ac}(\frac{a^{2}}{3} + \frac{b^{2}}{3} +\frac{c^{2}}{3} + 2c^{2}) \geq 4c\sqrt[2]{ac}.4\sqrt[4]{\frac{2a^{6}c^{2}}{27}} >8a^{2}c^{2} $
$ \Rightarrow \frac{(a+c)(b+c)}{a^{2}c^{2}} > \frac{8}{a^{2}+b^{2}+c^{2}} $
Do đó ta có điều cần CM
Đẳng thức xảy ra $ \Leftrightarrow $ $a=b=c $

Qua hai ví dụ 3 và 4 ta thấy rằng 'Phương pháp bán Schur-bán SOS" không những có hiệu quả với những bài bdt đối xứng mà còn có hiệu quả với các bdt hoán vị . Các bạn hãy thử chứng minh lại hai ví dụ trên bằng phương pháp SOS. Nếu sử dụng trực tiếp chúng , ta phải xét tới hai trường hợp $a\geq b\geq c $ và $ a \leq b\leq c $.Chắc các bạn đã nhận ra phần nào tính tự nhiên và cơ bản của phương pháp này.
Tuy nhiên ta vẫn có thể chứng minh chúng bằng SOS nhưng theo một cách không được tự nhiên lắm và không phảI ai cũng biết đến, đó là sẽ đưa bđt hoán vị trở thành bđt thức đốI xứng thông qua một bổ đề khá hay của anh Võ Quốc Bá Cẩn:
“$ Cho x,y,z > 0 , xyz =1 $ ta luôn có
$ \sum x^{2} \geq [\frac{3}{2}( x+y+z + \frac{1}{x} + \frac{1}{y}+ \frac{1}{z} ) - 6] $”

Còn nhiều cách chứng minh bổ đề trên nhưng quen thuộc nhất vẫn là phương pháp đồng biến . Đến đây chắc các bạn cũng có thể nhìn ra được vấn đề .Ở ví dụ 3 ta chỉ cần đặt
$ x=\frac{a+b}{b+c} , y= \frac{b+c}{c+a}, z=\frac{c+a}{a+b} $ ta sẽ có $xyz =1 $
Còn ở ví dụ 4 đặt $ x =\frac{a}{b} , y = \frac{b}{c} , z = \frac{c}{a} $

Vỉ khuôn khổ bài viết chỉ có hạn nên chúng tôi không thể viết được chi tiết lời giảI của hai ví dụ theo cách trên . ĐốI vớI những bạn chưa biết đến phương pháp bán Schur ; bán SOS thì có lẽ phương pháp được sử dụng là SOS . Tuy nhiên các bạn cũng thấy nếu không biết tới bổ đề của anh Cẩn thận việc chứng minh 2 ví dụ trên là vô cùng khó khăn . Một lần nữa , chúng tôi muốn nhấn mạnh đến tính tự nhiên và hiệu quả làm đơn giản hóa bài toán của phương pháp này.

Ví dụ 6
Cho $a,b,c $ dương ta có bđt sau:
$\sum\frac{a}{b+c} + \frac{abc}{2(a^{3}+ b^{3}+ c^{3})} \geq \frac{5}{3} $
GiảI :
Giả sử $c = max(a,b,c) $Ta có khai triển sau :
$\sum\frac{a}{b+c} - \frac{3}{2} = \frac {(a-b)^{2}}{(a+c)(b+c)} + (a-c)(b-c)\frac{a+b+2c}{2(a+b)(b+c)(c+a)} \geq 0 $
Do đó bđt trên có thể viết dướI dạng
$[\frac{1}{(c+a)(c+b)} - \frac{a+b+c}{6 (a^{3}+ b^{3}+ c^{3})}](a-b)^{2} + [\frac{a+b+2c}{2(a+b)(b+c)(c+a)} - \frac{a+b+c}{6 (a^{3}+ b^{3}+ c^{3})} ] (a-c)(b-c) \geq 0 $
Theo bđt Chebyshev ta có $3 (a^{3}+ b^{3}+ c^{3}) \geq (a^{2}+ b^{2}+ c^{2})(a+b+c) $
Ta có
$\frac{1}{(c+a)(c+b)} \geq \frac{1}{2(a^{2}+ b^{2}+ c^{2})} $ (3)
Thật vậy (3)$\Leftrightarrow 2(a^{2}+ b^{2}+ c^{2}) \geq (ab+bc+ac + c^{2}) $
$\Leftrightarrow \frac{1}{(c+a)(c+b)} \geq \frac{1}{2(a^{2}+ b^{2}+ c^{2 })} \geq \frac{a+b+c}{6 (a^{3}+ b^{3}+ c^{3})} $
Có c$= max(a,b,c) $
$\rightarrow \frac{a+b+2c}{2(a+b)(b+c)(c+a)}\geq \frac{1}{(a+c)(b+c)} \geq \frac{a+b+c}{6 (a^{3}+ b^{3}+ c^{3})} $
Từ đó ta có điều phảI CM
Đẳng thức xảy ra khi và chỉ khi $a=b=c $

Qua các ví dụ ta có thể thấy thuận lợI lớn nhất trong lờI giả bằng phương pháp này là việc sử dụng rất ít kiến thức cao cấp , thậm chí bạn không cần phảI biết đến những phương pháp phức tạp và khó như ABC, đồng biến ,… Tôi hi vọng rằng qua bài viết trên các bạn đã phần nào hiểu rõ được nộI dung và vẻ đẹp của phương pháp này .

Và đây là một số bài tập áp dụng

Bài 1 Cho $a,b,c > 0 $ CMR
$\frac{abc}{ a^{3}+ b^{3}+ c^{3}} + \frac{2}{3} \geq \frac{ab+bc+ca}{ a^{2}+ b^{2}+ c^{2}} $
Bài 2 Cho $a,b,c >0 $ CMR
$\sum\frac{b+c}{a} \geq \frac{4(a^{2}+ b^{2}+ c^{2})}{ab+bc+ac} +2 $
Bài 3(Phạm Kim Hùng ) Cho $a,b,c >0 $ . CMR
$ \frac{(a+b)(b+c)(c+a)}{abc} + \frac{4(a^{2}+ b^{2}+ c^{2})}{ab+bc+ca} \geq 12 $
Bài 4 Cho $a,b,c $ không âm CMR
$\frac{ a^{3}+ b^{3}+ c^{3}}{abc} + \frac{54abc}{(a+b+c)^{3}} \geq 5 $
Bài 5 Cho $a,b,c $ không âm CMR
$ \sum\frac{a^{2}+bc}{(b+c)^{2}} \geq \frac{3}{2} $
[RIGHT][I][B]Nguồn: MathScope.ORG[/B][/I][/RIGHT]
 

thay đổi nội dung bởi: truongvoki_bn, 05-02-2011 lúc 07:24 PM Lý do: latex
chien than is offline   Trả Lời Với Trích Dẫn
The Following 4 Users Say Thank You to chien than For This Useful Post:
cuongss0211 (01-02-2010), Franky.eco (03-02-2010), HocKoGioi (15-06-2012), unnamestar (29-08-2009)
Old 10-11-2007, 06:33 PM   #3
chien than
+Thành Viên+
 
chien than's Avatar
 
Tham gia ngày: Nov 2007
Đến từ: Toán 1 K41 trường THPT chuyên ĐHSP Hà Nội
Bài gởi: 138
Thanks: 1
Thanked 113 Times in 53 Posts
Gửi tin nhắn qua Yahoo chát tới chien than
Về tiêu chuẩn của SS, các bạn có thể tham khảo thêm qua ví dụ sau, áp dụng được nhiều hay không thì chịu, vì mình ít xài tiêu chuẩn (bài mình làm toàn bài dễ, không cần đến cái này)! .

[Only registered and activated users can see links. ]
[RIGHT][I][B]Nguồn: MathScope.ORG[/B][/I][/RIGHT]
 
chien than is offline   Trả Lời Với Trích Dẫn
The Following 3 Users Say Thank You to chien than For This Useful Post:
con_con_12 (10-06-2011), Franky.eco (03-02-2010), unnamestar (29-08-2009)
Old 10-11-2007, 06:35 PM   #4
chien than
+Thành Viên+
 
chien than's Avatar
 
Tham gia ngày: Nov 2007
Đến từ: Toán 1 K41 trường THPT chuyên ĐHSP Hà Nội
Bài gởi: 138
Thanks: 1
Thanked 113 Times in 53 Posts
Gửi tin nhắn qua Yahoo chát tới chien than
[Only registered and activated users can see links. ]
[RIGHT][I][B]Nguồn: MathScope.ORG[/B][/I][/RIGHT]
 
chien than is offline   Trả Lời Với Trích Dẫn
The Following 2 Users Say Thank You to chien than For This Useful Post:
Franky.eco (03-02-2010), unnamestar (29-08-2009)
Old 10-11-2007, 06:36 PM   #5
chien than
+Thành Viên+
 
chien than's Avatar
 
Tham gia ngày: Nov 2007
Đến từ: Toán 1 K41 trường THPT chuyên ĐHSP Hà Nội
Bài gởi: 138
Thanks: 1
Thanked 113 Times in 53 Posts
Gửi tin nhắn qua Yahoo chát tới chien than
Một số VD hoán vị dạng $ \frac{a^n}{b}+\frac{b^n}{c}+\frac{c^n}{a}-a^{n-1}-b^{n-1}-c^{n-1} $
Với các bài dạng này ta có 1 cách phân tích rất cơ bản, có thể rút ra từ 2 VD sau:
VD1:
$ f(a,b,c)=\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}-a-b-c=\frac{a^2-b^2}{b}+\frac{b^2-c^2}{c}+\frac{c^2-a^2}{a} $
$ =\frac{a^2-b^2}{b}+\frac{b^2-c^2}{c}-\frac{a^2-b^2}{a}+\frac{b^2-c^2}{a}=\frac{a+b}{ab}(a-b)^2+\frac{b+c}{ac}(a-c)(b-c) $
VD2:
$ f(a,b,c)= \frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}-a^2-b^2-c^2 = \frac{a^3-b^3}{b}+\frac{b^3-c^3}{c}+\frac{c^3-a^3}{a} $
$ =\frac{a^3-b^3}{b}+\frac{b^3-c^3}{c}-\frac{a^3-b^3}{a}-\frac{b^3-c^3}{a}=\frac{a^2+b^2+ab}{ab}(a-b)^2+\frac{b^2+c^2+bc}{ac}(b-c)^2 $

Bài tập:
Ví dụ 1
Cho a,b,c > 0 . CMR:
$ \frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a} \geq \frac{3(a^3+b^3+c^3)}{a^2+b^2+c^2} $
Giải:
Giả sử c=min(a,b,c).
ta có:
$ \frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}-a-b-c=\frac{a^2-b^2}{b}+\frac{b^2-c^2}{c}+\frac{c^2-a^2}{a} $
$ =\frac{a^2-b^2}{b}+\frac{b^2-c^2}{c}-\frac{a^2-b^2}{a}-\frac{b^2-c^2}{a}=\frac{a+b}{ab}(a-b)^2+\frac{b+c}{ac}(a-c)(b-c) $
$ \frac{3(a^3+b^3+c^3)}{a^2+b^2+c^2}-(a+b+c) = \frac{2a+2b}{a^2+b^2+c^2}(a-b)^2+\frac{a+b+2c}{a^2+b^2+c^2}(a-c)(b-c) $
Vậy:
M= $ \frac{a+b}{ab}-\frac{2(a+b)}{a^2+b^2+c^2} $
N= $ \frac{b+c}{ac}-\frac{a+b+2c}{a^2+b^2+c^2} $
dễ thấy M :geq 0.
ta có: N :geq 0 <=>$ (a^2+b^2+c^2)(b+c) \geq ac(a+b+2c) $
$ (a^2+b^2+c^2)(b+c) \geq 2c(a^2+b^2+c^2)=c[a^2+(\frac{1}{8}a^2+2b^2)+(\frac{1}{2}a^2+2c^2)+\f rac{3}{8}a^2) > c(a^2+ab+2ac)=ac(a+b+2c) $
vậy N :geq 0 => dpcm.

Ví dụ 2
Cho a,b,c > 0.CMR:
$\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a} \geq \sqrt{3(a^4+b^4+c^4)} $
Giải:
Giả sử c=min(a,b,c).
$ \frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}-a^2-b^2-c^2 = \frac{a^3-b^3}{b}+\frac{b^3-c^3}{c}+\frac{c^3-a^3}{a} $
$ =\frac{a^3-b^3}{b}+\frac{b^3-c^3}{c}-\frac{a^3-b^3}{a}-\frac{b^3-c^3}{a}=\frac{a^2+b^2+ab}{ab}(a-b)^2+\frac{b^2+c^2+bc}{ac}(b-c)^2 $
$ \sqrt{3(a^4+b^4+c^4)}-(a^2+b^2+c^2) $
$ =\frac{2(a+b)^2}{\sqrt{3(a^4+b^4+c^4}+a^2+b^2+c^2} (a-b)^2+\frac{2(a+c)(b+c)}{\sqrt{3(a^4+b^4+c^4)}+a^2+ b^2+c^2}(a-c)(b-c) $
Vậy M= $ \frac{a^2+b^2+ab}{ab}-\frac{2(a+b)^2}{\sqrt{3(a^4+b^4+c^4}+a^2+b^2+c^2} $
N= $ \frac{b^2+c^2+bc}{ac}-\frac{2(a+c)(b+c)}{\sqrt{3(a^4+b^4+c^4)}+a^2+b^2+c ^2} $
ta có:
$ (\sqrt{3(a^4+b^4+c^4}+a^2+b^2+c^2)(a^2+b^2+ab) \geq 2(a^2+b^2+c^2)3ab > 2ab(2(a^2+b^2)) \geq 2ab(a+b)^2 $ => M :geq 0.
$ (\sqrt{3(a^4+b^4+c^4}+a^2+b^2+c^2)(b^2+c^2+bc) \geq \frac{3}{2}c(b+c)(2(a^2+b^2+c^2)) $
$ \geq 2c(a^2b+abc+a^2c+ac^2)=2ac(a+c)(b+c) $ => N :geq 0

Sau đây là 1 số bài tập áp dụng phương pháp này:
Cho a,b,c :geq 0. CMR:
1. $ \sum \frac{a^2+bc}{b+c} \geq \sum a $
2. $ \frac{a^3+b^3+c^3}{2abc}+\frac{81abc}{(a+b+c)^3} \geq \frac{9}{2} $
3. $ \sum \frac{1}{a} \geq \sum \frac{b+c}{a^2+bc} $
4. $ \sum \frac{a^2+bc}{(b+c)^2} \geq \sum \frac{a}{b+c} $
5. $ \frac{a+2b}{c+2b}+\frac{b+2c}{a+2c}+\frac{c+2a}{b+ 2a} \geq 3 $
6. $ \frac{(a+b)(b+c)(c+a)}{abc}+\frac{4\sqrt{2}(ab+bc+ ca)}{a^2+b^2+c^2} \geq 8+4\sqrt{2} $
7. $ \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+\frac{(\ sqrt{3}-1)(ab+bc+ca)}{a^2+b^2+c^2} \geq \frac{3}{2}+(\sqrt{3}-1) $
8. $ \sum \frac{a^2+bc}{a^2(b+c)} \geq \sum \frac{1}{a} $
9. $ \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \geq (a+b+c)(\frac{1}{2a^2+bc}+\frac{1}{2b^2+ca}+\frac{ 1}{2c^2+ab}) $
Một số phân tích thường được sử dụngupdate)

1. $ a^2+b^2+c^2-ab-bc-ca=(a-b)^2+(a-c)(b-c) $
2. $ a^3+b^3+c^3-3abc=(a+b+c)(a-b)^2+(a+b+c)(a-c)(b-c) $
3. $ ab(a+b)+bc(b+c)+ca(c+a)-6abc=2c(a-b)^2+(a+b)(a-c)(b-c) $
4. $ ab^2+bc^2+ca^2-3abc=c(a-b)^2+b(a-c)(b-c) $
5. $ a^4+b^4+c^4 -abc(a+b+c) = [(a+b)^2+c^2](a-b)^2+[ab+(a+c)(b+c)](a-c)(b-c) $
6. $ a^3(b+c)+b^3(c+a)+c^3(a+b)-2abc(a+b+c)=(a+c)(b+c)(a-b)^2+(2ab+ac+bc)(a-c)(b-c) $
7. $ a^3b+b^3c+c^3a-abc(a+b+c)=(ca+cb)(a-b)^2+(a^2+ac)(a-c)(b-c) $
8. $ \frac{a}{b}+\frac{b}{c}+\frac{c}{a}-3=\frac{1}{ab}(a-b)^2+\frac{1}{ac}(a-c)(b-c) $

9. $ \frac{b+c}{a}+\frac{c+a}{b}+\frac{a+b}{c}-6=\frac{2}{ab}(a-b)^2+\frac{a+b}{abc}(a-c)(b-c) $

10. $ \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}-\frac{3}{2}=\frac{1}{(a+c)(b+c)}(a-b)^2+\frac{a+b+2c} {2(a+b)(b+c)(c+a)}(a-c)(b-c) $

11. $ \frac{a+kc}{a+kb}+\frac{b+ka}{b+kc}+\frac{c+kb}{c+ ka}-3=\frac{k^2}{(ka+c)(kb+c)}(a-b)^2+\frac{k[(k-1)a+(k^2-k+1)b+kc]}{(a+kb)(b+kc)(c+kb)}(a-c)(b-c) $

12. $ \frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}-\frac{a+b+c}{2}= \frac{a+b+c}{(a+c)(b+c)}(a-b)^2+\frac{(a+b+c)(a+b+2c)}{2(a+b)(b+c)(c+a)}(a-c)(b-c) $
[RIGHT][I][B]Nguồn: MathScope.ORG[/B][/I][/RIGHT]
 
chien than is offline   Trả Lời Với Trích Dẫn
The Following 8 Users Say Thank You to chien than For This Useful Post:
alltheright (10-03-2010), davida2k39 (29-04-2011), dellday23 (17-11-2009), duycvp (22-11-2009), Franky.eco (03-02-2010), hangocbinhh (16-04-2009), lady_kom4 (07-01-2010), unnamestar (29-08-2009)
Old 29-03-2009, 08:49 AM   #6
hocvienak6
+Thành Viên+
 
hocvienak6's Avatar
 
Tham gia ngày: Feb 2009
Bài gởi: 80
Thanks: 37
Thanked 99 Times in 20 Posts
SS pdf
Thanks cho em 1cáiribble:
[RIGHT][I][B]Nguồn: MathScope.ORG[/B][/I][/RIGHT]
 
File Kèm Theo
Kiểu File : pdf SS.PDF (486.9 KB, 980 lần tải)
__________________
LIVE TO LOVE
hocvienak6 is offline   Trả Lời Với Trích Dẫn
The Following 16 Users Say Thank You to hocvienak6 For This Useful Post:
asdfgh (09-12-2009), available (13-01-2010), devil_fermat (29-03-2009), Franky.eco (02-12-2009), HocKoGioi (26-06-2012), lupin (18-10-2010), Math Long (31-03-2009), ngocthi0101 (20-02-2010), ohio (24-08-2014), phanvip_lh (06-09-2009), qwertyineq (07-03-2010), tanglangquan (15-01-2011), unnamestar (29-08-2009), yeuanh123 (29-03-2009), Yucio.3bi_love (30-06-2011)
Trả lời Gởi Ðề Tài Mới

Bookmarks

Ðiều Chỉnh
Xếp Bài

Quuyền Hạn Của Bạn
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is Mở
Smilies đang Mở
[IMG] đang Mở
HTML đang Tắt

Chuyển đến


Múi giờ GMT. Hiện tại là 11:04 AM.


Powered by: vBulletin Copyright ©2000-2024, Jelsoft Enterprises Ltd.
Inactive Reminders By mathscope.org
[page compression: 78.60 k/86.35 k (8.97%)]