Diễn Đàn MathScopeDiễn Đàn MathScope
  Diễn Đàn MathScope
Ghi Danh Hỏi/Ðáp Thành Viên Social Groups Lịch Ðánh Dấu Ðã Ðọc

Go Back   Diễn Đàn MathScope > Sơ Cấp > Việt Nam và IMO > 2014

News & Announcements

Ngoài một số quy định đã được nêu trong phần Quy định của Ghi Danh , mọi người tranh thủ bỏ ra 5 phút để đọc thêm một số Quy định sau để khỏi bị treo nick ở MathScope nhé !

* Nội quy MathScope.Org

* Một số quy định chung !

* Quy định về việc viết bài trong diễn đàn MathScope

* Nếu bạn muốn gia nhập đội ngũ BQT thì vui lòng tham gia tại đây

* Những câu hỏi thường gặp

* Về việc viết bài trong Box Đại học và Sau đại học


Trả lời Gởi Ðề Tài Mới
 
Ðiều Chỉnh Xếp Bài
Old 03-01-2014, 11:30 AM   #1
huynhcongbang
Administrator

 
huynhcongbang's Avatar
 
Tham gia ngày: Feb 2009
Đến từ: Ho Chi Minh City
Bài gởi: 2,397
Thanks: 2,158
Thanked 4,147 Times in 1,367 Posts
Gửi tin nhắn qua Yahoo chát tới huynhcongbang
[VMO 2014] Bài 3 - Tổ hợp

Bài 3.
Cho đa giác đều có 103 cạnh. Tô màu đỏ 79 đỉnh của đa giác và tô màu xanh các đỉnh còn lại. Gọi $A$ là số cặp đỉnh đỏ kề nhau và $B$ là số cặp đỉnh xanh kề nhau.
a. Tìm tất cả các giá trị có thể nhận được của cặp $(A,B).$
b. Xác định số cách tô màu các đỉnh của đa giác để $B=14.$ Biết rằng hai cách tô màu được xem là như nhau nếu chúng có thể nhận được nhau qua một phép quay quanh tâm của đường tròn ngoại tiếp đa giác.
[RIGHT][I][B]Nguồn: MathScope.ORG[/B][/I][/RIGHT]
 
__________________
Mèo ơi có nhớ có thương một mèo...

thay đổi nội dung bởi: huynhcongbang, 03-01-2014 lúc 12:05 PM Lý do: Tự động gộp bài
huynhcongbang is offline   Trả Lời Với Trích Dẫn
The Following 3 Users Say Thank You to huynhcongbang For This Useful Post:
hoangqnvip (03-01-2014), quocbaoct10 (03-01-2014), thiendienduong (03-01-2014)
Old 03-01-2014, 12:14 PM   #2
luugiangnam
+Thành Viên+
 
Tham gia ngày: Dec 2012
Đến từ: Cà Mau
Bài gởi: 82
Thanks: 99
Thanked 31 Times in 19 Posts
Gửi tin nhắn qua Yahoo chát tới luugiangnam
Câu a ra đáp án giống anh Lữ mà lập luận khá mơ hồ ( sơ sơ thế này , ban đầu là (78,23 ) sau đó cho 1 xanh vào thì A, B cùng giảm 1, cho 2 xanh vào thì 1 là cả 2 cùng giảm 2 hoặc cả 2 cùng giảm 1 , cứ thể ta được KQ như trên.
[RIGHT][I][B]Nguồn: MathScope.ORG[/B][/I][/RIGHT]
 
__________________
http://www.facebook.com/giangnam.luu.9?ref=tn_tnmn
luugiangnam is offline   Trả Lời Với Trích Dẫn
Old 03-01-2014, 12:15 PM   #3
modular
B&S-D
 
Tham gia ngày: Nov 2007
Bài gởi: 589
Thanks: 395
Thanked 147 Times in 65 Posts
Post này là của huynhcongbang

--------------

A. Ta định nghĩa một nhóm các đỉnh xanh là một dãy các đỉnh xanh liên tiếp trên đường tròn và bị chặn hai đầu bởi màu đỏ. Tương tự với nhóm các đỉnh đỏ.
Rõ ràng số nhóm đỉnh xanh phải bằng số nhóm đỉnh đỏ.
Đặt các nhóm lượng đỉnh trong các đỏ là $r_1,r_2,...,r_k $ và số lượng đỉnh trong các nhóm xanh là $b_1,b_2,...,b_k $.

Hơn nữa, trong một nhóm có kích thước là $t$ thì số cặp đỉnh cùng màu là $t-1$.
Khi đó, ta có $A = \sum_{i=1}^k (r_i-1)$ và $B = \sum_{i=1}^k (b_i-1)$.
Ngoài ra, ta cũng có: $\sum_{i=1}^k r_i = 79, \sum_{i=1}^k b_i = 24$.
Từ đó suy ra $A = 79-k$ và $B=24-k$.
Ta cần có $1 \le k \le 24$ và dễ dàng suy ra có 24 cặp cặp $(A,B)$ có dạng $(A,B)=(79-k,24-k)$ với $k=1,2,3,...,24$.
[RIGHT][I][B]Nguồn: MathScope.ORG[/B][/I][/RIGHT]
 
modular is offline   Trả Lời Với Trích Dẫn
The Following 2 Users Say Thank You to modular For This Useful Post:
hoangqnvip (03-01-2014), huynhcongbang (03-01-2014)
Old 03-01-2014, 12:17 PM   #4
huynhcongbang
Administrator

 
huynhcongbang's Avatar
 
Tham gia ngày: Feb 2009
Đến từ: Ho Chi Minh City
Bài gởi: 2,397
Thanks: 2,158
Thanked 4,147 Times in 1,367 Posts
Gửi tin nhắn qua Yahoo chát tới huynhcongbang
B. Theo câu a thì với $B=14$, ta tìm được số nhóm $k=24-14=10$.
Khi đó, ta có $b_1+b_2+...+b_{10}=24$ và $r_1+r_2+...+r_{10}=79$.

Ta thấy ứng với mỗi bộ $(b_1,b_2,...,b_{10})$ và một bộ $(r_1,r_2,...,r_{10})$ là các bộ nghiệm nguyên dương của hai phương trình trên thì có đúng 1 cách tô thỏa mãn đề bài.

Do đó, theo bài toán chia kẹo Euler, số cách tô cần tìm là $C_{23}^{9}. C_{78}^{9}$.


[RIGHT][I][B]Nguồn: MathScope.ORG[/B][/I][/RIGHT]
 
__________________
Mèo ơi có nhớ có thương một mèo...

thay đổi nội dung bởi: huynhcongbang, 03-01-2014 lúc 12:29 PM
huynhcongbang is offline   Trả Lời Với Trích Dẫn
Old 03-01-2014, 12:19 PM   #5
hoangqnvip
+Thành Viên+
 
Tham gia ngày: Nov 2011
Đến từ: Quy Nhơn-Bình Định
Bài gởi: 66
Thanks: 283
Thanked 87 Times in 25 Posts
Gửi tin nhắn qua Yahoo chát tới hoangqnvip
Câu a ta có thể giải ra bằng 1 nhận xét sau:
Với mọi cách tô màu ta đều có $A-B=55$ và không đổi
Từ đây suy ra các giá trị $(A,B)$ là $(55,0);,,,;(78,23)$
[RIGHT][I][B]Nguồn: MathScope.ORG[/B][/I][/RIGHT]
 
hoangqnvip is offline   Trả Lời Với Trích Dẫn
Old 03-01-2014, 12:26 PM   #6
whatever2507
+Thành Viên+
 
whatever2507's Avatar
 
Tham gia ngày: May 2012
Đến từ: 12A1 Toán THPT chuyên KHTN
Bài gởi: 26
Thanks: 46
Thanked 36 Times in 16 Posts
Trích:
Nguyên văn bởi huynhcongbang View Post
B. Theo câu a thì với $B=14$, ta tìm được số nhóm $k=24-14=10$.
Khi đó, ta có $b_1+b_2+...+b_{10}=24$ và
$r_1+r_2+...+r_{10}=79$.

Ta thấy ứng với mỗi bộ $(b_1,b_2,...,b_{10})$ và một bộ $(r_1,r_2,...,r_{10})$ là các bộ nghiệm nguyên dương của hai phương trình trên thì có đúng 1 cách tô thỏa mãn đề bài.

Do đó, theo bài toán chia kẹo Euler, số cách tô cần tìm là $C_{23}^{10}. C_{78}^{10}$.


Đếm kẹo Euler thì chỉ ra $C_{23}^9.C_{78}^9$ thôi chứ anh . Với cả em nghĩ phải chia $10$ lần lặp vì bộ $(b_1,b_2,...,b_{10})$ và bộ $(r_1,r_2,...,r_{10})$ khi xếp lên đường tròn sẽ trùng với bộ $(b_i,...,b_{10},b_1,...,b_{i-1})$ và $(r_i,...,r_{10},r_1,...,r_{i-1})$ với mọi $i$ từ 1 đến 10. Đáp số cuối cùng của em là $\frac{C_{23}^9.C_{78}^9}{10}$
[RIGHT][I][B]Nguồn: MathScope.ORG[/B][/I][/RIGHT]
 
__________________
A mathematician is a device for turning coffee into theorems
(P.Erdos)
whatever2507 is offline   Trả Lời Với Trích Dẫn
The Following User Says Thank You to whatever2507 For This Useful Post:
huynhcongbang (03-01-2014)
Old 03-01-2014, 12:28 PM   #7
Fool's theorem
+Thành Viên Danh Dự+
 
Fool's theorem's Avatar
 
Tham gia ngày: Oct 2012
Đến từ: T1 K46 Chuyên ĐHSP Hà Nội
Bài gởi: 187
Thanks: 42
Thanked 191 Times in 101 Posts
Gửi tin nhắn qua Yahoo chát tới Fool's theorem
Câu b lúc đầu mình cũng ra đáp số giống bạn ĐM cơ mà thử cho mấy th nhỏ thì cái số kia chưa chắc đã nguyên.
[RIGHT][I][B]Nguồn: MathScope.ORG[/B][/I][/RIGHT]
 
__________________
Hope against hope.
Fool's theorem is offline   Trả Lời Với Trích Dẫn
Old 03-01-2014, 12:30 PM   #8
let_wind_go
+Thành Viên+
 
Tham gia ngày: Feb 2011
Bài gởi: 46
Thanks: 25
Thanked 35 Times in 12 Posts
Chán quá mình cũng chia kẹo euler nhưng lại ra $\frac{1}{10}.C_{23}^9$ vì cứ tưởng ứng với một cách tô xanh thì điểm đỏ xác định duy nhất, phí quá
[RIGHT][I][B]Nguồn: MathScope.ORG[/B][/I][/RIGHT]
 
let_wind_go is offline   Trả Lời Với Trích Dẫn
Old 03-01-2014, 12:30 PM   #9
huynhcongbang
Administrator

 
huynhcongbang's Avatar
 
Tham gia ngày: Feb 2009
Đến từ: Ho Chi Minh City
Bài gởi: 2,397
Thanks: 2,158
Thanked 4,147 Times in 1,367 Posts
Gửi tin nhắn qua Yahoo chát tới huynhcongbang
Trích:
Nguyên văn bởi whatever2507 View Post
Đếm kẹo Euler thì chỉ ra $C_{23}^9.C_{78}^9$ thôi chứ anh . Với cả em nghĩ phải chia $10$ lần lặp vì bộ $(b_1,b_2,...,b_{10})$ và bộ $(r_1,r_2,...,r_{10})$ khi xếp lên đường tròn sẽ trùng với bộ $(b_i,...,b_{10},b_1,...,b_{i-1})$ và $(r_i,...,r_{10},r_1,...,r_{i-1})$ với mọi $i$ từ 1 đến 10. Đáp số cuối cùng của em là $\frac{C_{23}^9.C_{78}^9}{10}$
Oh, anh nhớ nhầm tí. Anh đã sửa lại rồi.

Còn chuyện trùng nhau này thì để nghĩ thêm tí coi, chắc phải vẽ ra vài bộ mới dễ thấy được.
[RIGHT][I][B]Nguồn: MathScope.ORG[/B][/I][/RIGHT]
 
__________________
Mèo ơi có nhớ có thương một mèo...
huynhcongbang is offline   Trả Lời Với Trích Dẫn
Old 03-01-2014, 12:34 PM   #10
ahhungah
+Thành Viên+
 
Tham gia ngày: Jan 2014
Bài gởi: 5
Thanks: 0
Thanked 0 Times in 0 Posts
Em ra khác rồi các bác @@. C14/24*C9/78
[RIGHT][I][B]Nguồn: MathScope.ORG[/B][/I][/RIGHT]
 
ahhungah is offline   Trả Lời Với Trích Dẫn
Old 03-01-2014, 12:36 PM   #11
quocbaoct10
+Thành Viên Danh Dự+
 
quocbaoct10's Avatar
 
Tham gia ngày: Oct 2012
Đến từ: THPT chuyên Lê Quý Đôn-Nha Trang-Khánh Hòa
Bài gởi: 539
Thanks: 292
Thanked 364 Times in 217 Posts
Câu a thì giá trị như thế nào cũng không ảnh hưởng nên gọi số điểm đỏ là a và số điểm xanh là 103-a. chỉ cần xét các mô hình điểm, nếu đổi chỗ 2 điểm xanh và đỏ bất kì thì A và B sẽ cùng tăng 1 nếu nó có cấu hình $(...AABABA...) \rightarrow (...AAABBA...)$ , không thay đổi nếu nó có cấu hình $(...ABBABB...) \rightarrow(...ABABBB...)$ hoặc (...BAABAA...)->(...BABAAA...) và giảm 1 nếu có cấu hình $(...AABB...) \rightarrow (...ABAB...)$... nên từ đó ta chỉ có thể nhận được các bộ $(A,B)=(a-k,103-a-k)$

[RIGHT][I][B]Nguồn: MathScope.ORG[/B][/I][/RIGHT]
 
__________________
i'll try my best.
quocbaoct10 is offline   Trả Lời Với Trích Dẫn
Old 03-01-2014, 12:45 PM   #12
Fool's theorem
+Thành Viên Danh Dự+
 
Fool's theorem's Avatar
 
Tham gia ngày: Oct 2012
Đến từ: T1 K46 Chuyên ĐHSP Hà Nội
Bài gởi: 187
Thanks: 42
Thanked 191 Times in 101 Posts
Gửi tin nhắn qua Yahoo chát tới Fool's theorem
Mình k nghĩ chia 10 là đúng đâu. Lí do là trong nghiệm ta xét thì các bộ $(m_i,n_i)$ chưa chắc đã phân biệt nên chưa chắc mỗi cái đã lặp đúng 10 lần.
Thử với t/h nhỏ hơn sẽ thấy sai đó là
$n_1+n_2+n_3+n_4=4$
$m_1+m_2+m_3+m_4=6$
Nếu dùng đúng ct thì sẽ là $\frac{C^3_3 C^3_5}{4}$ k phải là số nguyên
[RIGHT][I][B]Nguồn: MathScope.ORG[/B][/I][/RIGHT]
 
__________________
Hope against hope.

thay đổi nội dung bởi: Fool's theorem, 03-01-2014 lúc 12:49 PM
Fool's theorem is offline   Trả Lời Với Trích Dẫn
Old 03-01-2014, 01:10 PM   #13
whatever2507
+Thành Viên+
 
whatever2507's Avatar
 
Tham gia ngày: May 2012
Đến từ: 12A1 Toán THPT chuyên KHTN
Bài gởi: 26
Thanks: 46
Thanked 36 Times in 16 Posts
Có lễ là chia 10 theo mình nghĩ là vẫn đúng vì trong 10 lần lặp không có 2 lần nào trùng nhau vì $(79,10)=1$, giải thích cũng không khó nhưng đúng là nếu không có thì sẽ không chặt chẽ! lại mất 1 ít điểm rồi
[RIGHT][I][B]Nguồn: MathScope.ORG[/B][/I][/RIGHT]
 
__________________
A mathematician is a device for turning coffee into theorems
(P.Erdos)
whatever2507 is offline   Trả Lời Với Trích Dẫn
The Following 4 Users Say Thank You to whatever2507 For This Useful Post:
Fool's theorem (03-01-2014), hoangqnvip (03-01-2014), huynhcongbang (03-01-2014), quocbaoct10 (03-01-2014)
Old 03-01-2014, 01:19 PM   #14
Fool's theorem
+Thành Viên Danh Dự+
 
Fool's theorem's Avatar
 
Tham gia ngày: Oct 2012
Đến từ: T1 K46 Chuyên ĐHSP Hà Nội
Bài gởi: 187
Thanks: 42
Thanked 191 Times in 101 Posts
Gửi tin nhắn qua Yahoo chát tới Fool's theorem
Trích:
Nguyên văn bởi whatever2507 View Post
Có lễ là chia 10 theo mình nghĩ là vẫn đúng vì trong 10 lần lặp không có 2 lần nào trùng nhau vì $(79,10)=1$, giải thích cũng không khó nhưng đúng là nếu không có thì sẽ không chặt chẽ! lại mất 1 ít điểm rồi
Ừ có vẻ hợp lí rồi
Thôi xong, ghi hết vào bài rồi xong gạch hết từ sau đoạn chia kẹo Euler
Hôm nay nó cứ thế nào thế k biết
[RIGHT][I][B]Nguồn: MathScope.ORG[/B][/I][/RIGHT]
 
__________________
Hope against hope.
Fool's theorem is offline   Trả Lời Với Trích Dẫn
Old 03-01-2014, 01:54 PM   #15
quangvinht2
+Thành Viên+
 
Tham gia ngày: Feb 2009
Bài gởi: 18
Thanks: 9
Thanked 25 Times in 8 Posts
Nếu có 1 cách tô nào đó khi quay quanh tâm lại thu được chính nó, khi đó r1, r2, ..., r10 nhóm thành 5 cặp mỗi cặp gồm 2 số bằng nhau. Mâu thuẫn vì tổng là 79 lẻ.
[RIGHT][I][B]Nguồn: MathScope.ORG[/B][/I][/RIGHT]
 
quangvinht2 is offline   Trả Lời Với Trích Dẫn
Trả lời Gởi Ðề Tài Mới

Bookmarks

Ðiều Chỉnh
Xếp Bài

Quuyền Hạn Của Bạn
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is Mở
Smilies đang Mở
[IMG] đang Mở
HTML đang Tắt

Chuyển đến


Múi giờ GMT. Hiện tại là 01:24 PM.


Powered by: vBulletin Copyright ©2000-2018, Jelsoft Enterprises Ltd.
Inactive Reminders By mathscope.org
[page compression: 99.87 k/116.02 k (13.92%)]