Diễn Đàn MathScopeDiễn Đàn MathScope
  Diễn Đàn MathScope
Ghi Danh Hỏi/Ðáp Community Lịch

Go Back   Diễn Đàn MathScope > Sơ Cấp > Việt Nam và IMO > 2012

News & Announcements

Ngoài một số quy định đã được nêu trong phần Quy định của Ghi Danh , mọi người tranh thủ bỏ ra 5 phút để đọc thêm một số Quy định sau để khỏi bị treo nick ở MathScope nhé !

* Nội quy MathScope.Org

* Một số quy định chung !

* Quy định về việc viết bài trong diễn đàn MathScope

* Nếu bạn muốn gia nhập đội ngũ BQT thì vui lòng tham gia tại đây

* Những câu hỏi thường gặp

* Về việc viết bài trong Box Đại học và Sau đại học


Trả lời Gởi Ðề Tài Mới
 
Ðiều Chỉnh Xếp Bài
Old 11-01-2012, 09:26 PM   #1
ThangToan
+Thành Viên+
 
Tham gia ngày: Nov 2010
Đến từ: THPT chuyên Vĩnh Phúc
Bài gởi: 570
Thanks: 24
Thanked 537 Times in 263 Posts
Trích:
Nguyên văn bởi n.v.thanh View Post
Bài 4 (5 điểm) .
Cho số nguyên dương $n $. Có $n $ học sinh nam và $n $ học sinh nữ xếp thành một hàng ngang, theo thứ tự tùy ý. Mỗi học sinh (trong số $2n $ học sinh vừa nêu) được cho một số kẹo bằng đúng số cách chọn ra hai học sinh khác giới với X và đứng ở hai phía của $X $. Chứng minh rằng tổng số kẹo mà tất cả $2n $ học sinh nhận được không vượt quá $\frac{1}{3}n(n^2-1) $.
Tôi trình bày lại lời giải bài toán này một cách chi tiết như sau:
Bài này có thể làm như sau:
Trước hết ta đánh số $2n $ học sinh có vị trí là $1, 2, ..., 2n $. Giả sử học sinh nam ở các vị trí $i_1, i_2, ..., i_n $. Khi đó với học sinh nam ở vị trí thứ $i_k $ thì số kẹo nhận được là: $\[\left( {{i_k} - k} \right)\left( {n + k - {i_k}} \right)\] $. Do đó tổng số kẹo n học sinh nam nhận được là:
$\[\sum\limits_{k = 1}^n {\left( {{i_k} - k} \right)\left( {n + k - {i_k}} \right)} \] $.
Tiếp theo ta tính số kẹo của học sinh nữ.
Số kẹo mà các học sinh nữ ở vị trí $<i_1 $ bằng 0. Số kẹo mà các học sinh nữ ở bị trí $>i_n $ bằng 0.
số kẹo mà các học sinh nữ ở vị trí h sao cho $i_k<h<i_{k+1}; k=1,...,n-1 $ bằng $\[k\left( {n - k} \right)\left( {{i_{k + 1}} - {i_k} - 1} \right)\] $ suy ra tổng số kẹo mà n học sinh nữ nhận được là:
$\[\sum\limits_{k = 1}^{n - 1} {k\left( {n - k} \right)\left( {{i_{k + 1}} - {i_k} - 1} \right)} $
Do đó tổng số kẹo các học sinh nhận được bằng:
$\sum\limits_{k = 1}^n {\left( {{i_k} - k} \right)\left( {n + k - {i_k}} \right)} +\sum\limits_{k = 1}^{n - 1} {k\left( {n - k} \right)\left( {{i_{k + 1}} - {i_k} - 1} \right)} $
Sau đó chứng minh
$\sum\limits_{k = 1}^n {\left( {{i_k} - k} \right)\left( {n + k - {i_k}} \right)} +\sum\limits_{k = 1}^{n - 1} {k\left( {n - k} \right)\left( {{i_{k + 1}} - {i_k} - 1} \right)}\le \frac{1}{3}n(n^2-1) $
Thật vậy, $\sum\limits_{k = 1}^n {\left( {{i_k} - k} \right)\left( {n + k - {i_k}} \right)} +\sum\limits_{k = 1}^{n - 1} {k\left( {n - k} \right)\left( {{i_{k + 1}} - {i_k} - 1} \right)} $
$=\sum\limits_{k = 1}^n {n{i_k}} - n\sum\limits_{k = 1}^n k - \sum\limits_{k = 1}^n {{{\left( {{i_k} - k} \right)}^2}} + n\sum\limits_{k = 1}^{n - 1} {k\left( {{i_{k + 1}} - {i_k}} \right)} - \sum\limits_{k = 1}^{n - 1} {{k^2}\left( {{i_{k + 1}} - {i_k}} \right)} - \sum\limits_{k = 1}^{n - 1} {k\left( {n - k} \right)} $
$=\sum\limits_{k = 1}^n {n{i_k}} - \frac{{{n^2}\left( {n + 1} \right)}}{2} - \sum\limits_{k = 1}^n {{{\left( {{i_k} - k} \right)}^2}} - n\sum\limits_{k = 1}^{n - 1} {{i_{k + 1}}} + n\sum\limits_{k = 1}^{n - 1} {\left( {\left( {k + 1} \right){i_{k + 1}} - k{i_k}} \right)} + \sum\limits_{k = 1}^{n - 1} {\left( {2k + 1} \right){i_{k + 1}}} - \sum\limits_{k = 1}^{n - 1} {\left( {{{\left( {k + 1} \right)}^2}{i_{k + 1}} - {k^2}{i_k}} \right)} - \frac{{n\left( {{n^2} - 1} \right)}}{6} $
$= - \sum\limits_{k = 1}^n {{{\left( {{i_k} - k} \right)}^2}} + \sum\limits_{k = 1}^{n } {\left( {2k - 1} \right){i_{k }}} $
$=\frac{{ - \sum\limits_{k = 1}^n {{{\left( {{i_k} - 2k} \right)}^2}} - \sum\limits_{k = 1}^n {{{\left( {{i_k} - 2k + 1} \right)}^2}} + \sum\limits_{k = 1}^n {{k^2}} + \sum\limits_{k = 1}^n {{{\left( {k - 1} \right)}^2}} }}{2} $
$= - \frac{{\sum\limits_{k = 1}^n {{{\left( {{i_k} - 2k} \right)}^2}} + \sum\limits_{k = 1}^n {{{\left( {{i_k} - 2k + 1} \right)}^2}} + n}}{2} + \frac{{n\left( {{n^2} - 1} \right)}}{3} $ (1)
Với chú ý ${\left( {{i_k} - 2k} \right)^2} + {\left( {{i_k} - 2k + 1} \right)^2} \ge 1, \forall k, 1\le k\le n $ nên từ (1) ta có đpcm.
Dấu bằng chẳng hạn $i_k=2k, k=1, 2, ..., n $
[RIGHT][I][B]Nguồn: MathScope.ORG[/B][/I][/RIGHT]
 

thay đổi nội dung bởi: ThangToan, 11-01-2012 lúc 09:57 PM
ThangToan is offline   Trả Lời Với Trích Dẫn
The Following 2 Users Say Thank You to ThangToan For This Useful Post:
Highschoolmath (11-01-2012), hoangkhtn2010 (11-01-2012)
Old 11-01-2012, 11:54 PM   #2
anhdunghmd
+Thành Viên+
 
Tham gia ngày: Jan 2012
Đến từ: Kiên Giang
Bài gởi: 6
Thanks: 42
Thanked 4 Times in 3 Posts
Bài tổ hợp

Không biết đánh Latex khổ thật. Chắc phải học thôi. Bài 4, mọi người Check dùm nhé.
[RIGHT][I][B]Nguồn: MathScope.ORG[/B][/I][/RIGHT]
 
File Kèm Theo
Kiểu File : doc Bài 4.doc (71.5 KB, 45 lần tải)
anhdunghmd is offline   Trả Lời Với Trích Dẫn
Old 12-01-2012, 03:26 AM   #3
hungmat
+Thành Viên+
 
Tham gia ngày: Nov 2009
Bài gởi: 2
Thanks: 1
Thanked 0 Times in 0 Posts
Trích:
Nguyên văn bởi ThangToan View Post
Tôi trình bày lại lời giải bài toán này một cách chi tiết như sau:
Bài này có thể làm như sau:
Trước hết ta đánh số $2n $ học sinh có vị trí là $1, 2, ..., 2n $. Giả sử học sinh nam ở các vị trí $i_1, i_2, ..., i_n $. Khi đó với học sinh nam ở vị trí thứ $i_k $ thì số kẹo nhận được là: $\[\left( {{i_k} - k} \right)\left( {n + k - {i_k}} \right)\] $. Do đó tổng số kẹo n học sinh nam nhận được là:
$\[\sum\limits_{k = 1}^n {\left( {{i_k} - k} \right)\left( {n + k - {i_k}} \right)} \] $.
Tiếp theo ta tính số kẹo của học sinh nữ.
Số kẹo mà các học sinh nữ ở vị trí $<i_1 $ bằng 0. Số kẹo mà các học sinh nữ ở bị trí $>i_n $ bằng 0.
số kẹo mà các học sinh nữ ở vị trí h sao cho $i_k<h<i_{k+1}; k=1,...,n-1 $ bằng $\[k\left( {n - k} \right)\left( {{i_{k + 1}} - {i_k} - 1} \right)\] $ suy ra tổng số kẹo mà n học sinh nữ nhận được là:
$\[\sum\limits_{k = 1}^{n - 1} {k\left( {n - k} \right)\left( {{i_{k + 1}} - {i_k} - 1} \right)} $
Do đó tổng số kẹo các học sinh nhận được bằng:
$\sum\limits_{k = 1}^n {\left( {{i_k} - k} \right)\left( {n + k - {i_k}} \right)} +\sum\limits_{k = 1}^{n - 1} {k\left( {n - k} \right)\left( {{i_{k + 1}} - {i_k} - 1} \right)} $
Sau đó chứng minh
$\sum\limits_{k = 1}^n {\left( {{i_k} - k} \right)\left( {n + k - {i_k}} \right)} +\sum\limits_{k = 1}^{n - 1} {k\left( {n - k} \right)\left( {{i_{k + 1}} - {i_k} - 1} \right)}\le \frac{1}{3}n(n^2-1) $
Thật vậy, $\sum\limits_{k = 1}^n {\left( {{i_k} - k} \right)\left( {n + k - {i_k}} \right)} +\sum\limits_{k = 1}^{n - 1} {k\left( {n - k} \right)\left( {{i_{k + 1}} - {i_k} - 1} \right)} $
$=\sum\limits_{k = 1}^n {n{i_k}} - n\sum\limits_{k = 1}^n k - \sum\limits_{k = 1}^n {{{\left( {{i_k} - k} \right)}^2}} + n\sum\limits_{k = 1}^{n - 1} {k\left( {{i_{k + 1}} - {i_k}} \right)} - \sum\limits_{k = 1}^{n - 1} {{k^2}\left( {{i_{k + 1}} - {i_k}} \right)} - \sum\limits_{k = 1}^{n - 1} {k\left( {n - k} \right)} $
$=\sum\limits_{k = 1}^n {n{i_k}} - \frac{{{n^2}\left( {n + 1} \right)}}{2} - \sum\limits_{k = 1}^n {{{\left( {{i_k} - k} \right)}^2}} - n\sum\limits_{k = 1}^{n - 1} {{i_{k + 1}}} + n\sum\limits_{k = 1}^{n - 1} {\left( {\left( {k + 1} \right){i_{k + 1}} - k{i_k}} \right)} + \sum\limits_{k = 1}^{n - 1} {\left( {2k + 1} \right){i_{k + 1}}} - \sum\limits_{k = 1}^{n - 1} {\left( {{{\left( {k + 1} \right)}^2}{i_{k + 1}} - {k^2}{i_k}} \right)} - \frac{{n\left( {{n^2} - 1} \right)}}{6} $
$= - \sum\limits_{k = 1}^n {{{\left( {{i_k} - k} \right)}^2}} + \sum\limits_{k = 1}^{n } {\left( {2k - 1} \right){i_{k }}} $
$=\frac{{ - \sum\limits_{k = 1}^n {{{\left( {{i_k} - 2k} \right)}^2}} - \sum\limits_{k = 1}^n {{{\left( {{i_k} - 2k + 1} \right)}^2}} + \sum\limits_{k = 1}^n {{k^2}} + \sum\limits_{k = 1}^n {{{\left( {k - 1} \right)}^2}} }}{2} $
$= - \frac{{\sum\limits_{k = 1}^n {{{\left( {{i_k} - 2k} \right)}^2}} + \sum\limits_{k = 1}^n {{{\left( {{i_k} - 2k + 1} \right)}^2}} + n}}{2} + \frac{{n\left( {{n^2} - 1} \right)}}{3} $ (1)
Với chú ý ${\left( {{i_k} - 2k} \right)^2} + {\left( {{i_k} - 2k + 1} \right)^2} \ge 1, \forall k, 1\le k\le n $ nên từ (1) ta có đpcm.
Dấu bằng chẳng hạn $i_k=2k, k=1, 2, ..., n $
Cách làm của bạn rất hay tuy nhiên đoạn cuối bị nhầm 1 tý, phải là tổng của ${\left( {{i_k} - 2k} \right)^2} + {\left( {{i_k} - 2k} \right)} $ >=0 với chạy từ 1 đến n, đặt a = ${\left( {{i_k} - 2k} \right)} $ là số nguyên nên phương trình ${\left( {a} \right)^2} + {\left( {a} \right)} $ luôn không âm, dấu = xảy ra khi a = 0 hoặc a = -1
[RIGHT][I][B]Nguồn: MathScope.ORG[/B][/I][/RIGHT]
 

thay đổi nội dung bởi: hungmat, 12-01-2012 lúc 03:34 AM
hungmat is offline   Trả Lời Với Trích Dẫn
Old 12-01-2012, 04:52 AM   #4
ThangToan
+Thành Viên+
 
Tham gia ngày: Nov 2010
Đến từ: THPT chuyên Vĩnh Phúc
Bài gởi: 570
Thanks: 24
Thanked 537 Times in 263 Posts
Trích:
Nguyên văn bởi hungmat View Post
Cách làm của bạn rất hay tuy nhiên đoạn cuối bị nhầm 1 tý, phải là tổng của ${\left( {{i_k} - 2k} \right)^2} + {\left( {{i_k} - 2k} \right)} $ >=0 với chạy từ 1 đến n, đặt a = ${\left( {{i_k} - 2k} \right)} $ là số nguyên nên phương trình ${\left( {a} \right)^2} + {\left( {a} \right)} $ luôn không âm, dấu = xảy ra khi a = 0 hoặc a = -1
Không biến đổi nhầm đâu bạn: chú ý $\[\sum\limits_{k = 1}^n {\left( {2k - 1} \right){i_k}} = \frac{{\sum\limits_{k = 1}^n {\left( {2k{i_k}} \right)} + \sum\limits_{k = 1}^n {\left( {\left( {2k - 2} \right){i_k}} \right)} }}{2}\] $
[RIGHT][I][B]Nguồn: MathScope.ORG[/B][/I][/RIGHT]
 
ThangToan is offline   Trả Lời Với Trích Dẫn
Trả lời Gởi Ðề Tài Mới

Bookmarks


Quuyền Hạn Của Bạn
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is Mở
Smilies đang Mở
[IMG] đang Mở
HTML đang Tắt

Chuyển đến


Múi giờ GMT. Hiện tại là 01:40 AM.


Powered by: vBulletin Copyright ©2000-2024, Jelsoft Enterprises Ltd.
Inactive Reminders By mathscope.org
[page compression: 60.99 k/67.58 k (9.75%)]