Diễn Đàn MathScopeDiễn Đàn MathScope
  Diễn Đàn MathScope
Ghi Danh Hỏi/Ðáp Thành Viên Social Groups Lịch Ðánh Dấu Ðã Ðọc

Go Back   Diễn Đàn MathScope > Sơ Cấp > Đại Số và Lượng Giác

News & Announcements

Ngoài một số quy định đã được nêu trong phần Quy định của Ghi Danh , mọi người tranh thủ bỏ ra 5 phút để đọc thêm một số Quy định sau để khỏi bị treo nick ở MathScope nhé !

* Nội quy MathScope.Org

* Một số quy định chung !

* Quy định về việc viết bài trong diễn đàn MathScope

* Nếu bạn muốn gia nhập đội ngũ BQT thì vui lòng tham gia tại đây

* Những câu hỏi thường gặp

* Về việc viết bài trong Box Đại học và Sau đại học


 
 
Ðiều Chỉnh Xếp Bài
Prev Previous Post   Bài tiếp Next
Old 26-07-2012, 09:47 AM   #11
vjpd3pz41iuai
+Thành Viên+
 
vjpd3pz41iuai's Avatar
 
Tham gia ngày: Dec 2011
Bài gởi: 302
Thanks: 129
Thanked 130 Times in 81 Posts
Trích:
Nguyên văn bởi hoangduyenkhtn View Post
Mình muốn trao đổi thêm một chút về bài toán 10. Bài toán thực chất là bài toán sau. Để thấy điều này bạn chia cả 2 vế cho abc
Cho a,b,c là các số thực dương, m là số thực không âm. Khi đó ta có:
$\frac{a^3}{a^2+b^2+mab}+\frac{b^3}{b^2+c^2+mbc}+
\frac{c^3}{c^2+a^2+mca}\ge\frac{a+b+c}{2+m} $
Bài toán này chứng minh bằng AM-GM ngược dấu.
Bài toán trên thực chất là $m=\frac{1}{abc} $
Bạn có thể thay đổi tùy ý m để được các bất đẳng thức khác và có thể sáng tạo ra nhiều bất đẳng thức khác cho dạng toán này và các bạn có thể tham khảo thêm ở các bài giảng về bất đẳng thức côsi của thầy nguyễn vũ lương.Chúc toàn thể diễn đàn ngày mới vui vẻ và làm việc hiệu quả.
Chuẩn rồi.Mình cũng từ bài toán tổng quát để đổi biến mà
[RIGHT][I][B]Nguồn: MathScope.ORG[/B][/I][/RIGHT]
 
__________________
vjpd3pz41iuai is offline   Trả Lời Với Trích Dẫn
 

Bookmarks

Ðiều Chỉnh
Xếp Bài

Quuyền Hạn Của Bạn
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is Mở
Smilies đang Mở
[IMG] đang Mở
HTML đang Tắt

Chuyển đến


Múi giờ GMT. Hiện tại là 06:44 PM.


Powered by: vBulletin Copyright ©2000-2019, Jelsoft Enterprises Ltd.
Inactive Reminders By mathscope.org
[page compression: 328.97 k/333.07 k (1.23%)]