Diễn Đàn MathScopeDiễn Đàn MathScope
  Diễn Đàn MathScope

  Diễn Đàn MathScope > Sơ Cấp > Giải Tích

News & Announcements

Ngoài một số quy định đã được nêu trong phần Quy định của Ghi Danh , mọi người tranh thủ bỏ ra 5 phút để đọc thêm một số Quy định sau để khỏi bị treo nick ở MathScope nhé !

* Nội quy MathScope.Org

* Một số quy định chung !

* Quy định về việc viết bài trong diễn đàn MathScope

* Nếu bạn muốn gia nhập đội ngũ BQT thì vui lòng tham gia tại đây

* Những câu hỏi thường gặp

* Về việc viết bài trong Box Đại học và Sau đại học


 
11-01-2018, 11:55 AM   #1
queen669
+Thành Viên+
 
: Oct 2017
: 6
: 0
Bài dãy số VMO 2018

Cho dãy số $\left\{x_n\right\}_{n\in\mathbb Z^+}$ xác định bởi công thức truy hồi $x_1=2$ và
\[{x_{n + 1}} = \sqrt {{x_n} + 8} - \sqrt {{x_n} + 3}\quad\forall\,n\in\mathbb Z^+ .\]
  1. Chứng minh rằng dãy đã cho hội tụ và tính giới hạn.
  2. Chứng minh rằng
    \[n \le {x_1} + {x_2} + \ldots + {x_n} \le n + 1\quad\forall\,n\in\mathbb Z^+ .\]

[RIGHT][I][B]Nguồn: MathScope.ORG[/B][/I][/RIGHT]
 
 
11-01-2018, 12:17 PM   #2
tmp
+Thành Viên+
 
: Dec 2010
: 149
: 26
Dang u(n+1) =f (u(n))
[RIGHT][I][B]Nguồn: MathScope.ORG[/B][/I][/RIGHT]
 
 
11-01-2018, 12:44 PM   #3
Thụy An
+Thành Viên+

 
: Oct 2017
: 93
: 1
:
Cho dãy số $\left\{x_n\right\}_{n\in\mathbb Z^+}$ xác định bởi công thức truy hồi $x_1=2$ và
\[{x_{n + 1}} = \sqrt {{x_n} + 8} - \sqrt {{x_n} + 3}\quad\forall\,n\in\mathbb Z^+ .\]
  1. Chứng minh rằng dãy đã cho hội tụ và tính giới hạn.
  2. Chứng minh rằng
    \[n \le {x_1} + {x_2} + \ldots + {x_n} \le n + 1\quad\forall\,n\in\mathbb Z^+ .\]
  1. Ta có
    \[\left| {{x_{n + 1}} - 1} \right| = \left| {{x_n} - 1} \right|\left( {\frac{1}{{2 + \sqrt {{x_n} + 3} }} - \frac{1}{{3 + \sqrt {{x_n} + 8} }}} \right) < \frac{{\left| {{x_n} - 1} \right|}}{2}.\]
    Từ đây thấy dãy là dãy co, nên hội tụ về $1$.


  2. Xét hàm $f\left( x \right) = \sqrt {x + 8} - \sqrt {x + 3}$ trên $\mathbb R^+$, nó là hàm lồi và do vậy theo bất đẳng thức tiếp tuyến có
    \[{x_{n + 1}} \ge f\left( 1 \right) + \left( {{x_n} - 1} \right)f'\left( 1 \right) = 1 - \frac{{{x_n} - 1}}{{12}}\quad\forall\,n\in\mathbb Z^+ .\]
    Lấy tổng lại ta được
    \[{x_2} + {x_3} + \ldots + {x_{n + 1}} \ge n - \frac{1}{{12}}\left( {{x_1} + {x_2} + \ldots + {x_n}}-n \right).\]
    Từ đó ta sẽ có
    \[{x_1} + {x_2} + \ldots + {x_n} -n\ge \frac{{12}}{{13}}\left( {{x_1} - {x_{n+1}}} \right) = \frac{{12}}{{13}}\left( {2 - {x_{n+1}}} \right);\;(1).\]
    Từ ý trên ta có
    \[\left| {{x_{n + 1}} - 1} \right| \le \frac{1}{{{2^n}}}\left| {{x_1} - 1} \right| = \frac{1}{{{2^n}}}\quad\forall\,n\in\mathbb Z^+ .\]
    Cho nên $x_{n+1}<1+\dfrac{1}{2^n}<2$, và từ $(1)$ ta có
    \[{x_1} + {x_2} + \ldots + {x_n} \ge n\quad\forall\,n\in\mathbb Z^+ .\]
    Lại bởi vì
    \[{x_{n + 1}} - 1 = - \left( {{x_n} - 1} \right)\left( {\frac{1}{{2 + \sqrt {{x_n} + 3} }} - \frac{1}{{3 + \sqrt {{x_n} + 8} }}} \right).\]
    Nên dễ dàng có được $x_{2k}\le 1\le x_{2k-1}\;\forall\,k\in\mathbb Z^+$ và
    \[{x_{2n}} + {x_{2n + 1}} - 2 = \left( {{x_{2n}} - 1} \right)\left( {1 - \frac{1}{{2 + \sqrt {{x_n} + 3} }} + \frac{1}{{3 + \sqrt {{x_n} + 8} }}} \right) < 0\quad\forall\,n\in\mathbb Z^+ .\]
    Từ đó ta sẽ thấy
    \[{x_1} + {x_2} + \ldots + {x_{2n + 1}} = 2 + \left( {{x_2} + {x_3}} \right) + \ldots + \left( {{x_{2n}} + {x_{2n + 1}}} \right) \le 2n + 2\quad\forall\,n\in\mathbb Z^+ .\]
    Và do $x_{2n+2}\le 1\;\forall\,n\in\mathbb Z^+ $ nên
    \[{x_1} + {x_2} + \ldots + {x_{2n + 2}} = \left( {{x_1} + {x_2} + \ldots + {x_{2n + 1}}} \right) + {x_{2n + 2}} \le 2n + 2 + 1\quad\forall\,n\in\mathbb Z^+ .\]
    Bởi vậy cho nên ta có
    \[{x_1} + {x_2} + \ldots + {x_n} \le n + 1\quad\forall\,n\in\mathbb Z^+ .\]

[RIGHT][I][B]Nguồn: MathScope.ORG[/B][/I][/RIGHT]
 

 
Le khanhsy (12-01-2018), NguyenHoang123 (11-01-2018)
11-01-2018, 02:14 PM   #4
thaygiaocht
+Thành Viên+
 
 
: Aug 2012
: Chuyên Hà Tĩnh
: 165
: 793
:
Cho dãy số $\left\{x_n\right\}_{n\in\mathbb Z^+}$ xác định bởi công thức truy hồi $x_1=2$ và
\[{x_{n + 1}} = \sqrt {{x_n} + 8} - \sqrt {{x_n} + 3}\quad\forall\,n\in\mathbb Z^+ .\]
  1. Chứng minh rằng dãy đã cho hội tụ và tính giới hạn.
  2. Chứng minh rằng
    \[n \le {x_1} + {x_2} + \ldots + {x_n} \le n + 1\quad\forall\,n\in\mathbb Z^+ .\]
Có thể tiếp cận câu này như sau
.
[RIGHT][I][B]Nguồn: MathScope.ORG[/B][/I][/RIGHT]
 
105.jpg (58.1 , )
__________________
https://www.facebook.com/thaygiaocht

 
11-01-2018, 03:07 PM   #5
duca1pbc
+Thành Viên+
 
 
: Nov 2007
: 139
: 3
Lâu ngày quá vào làm bài dãy chơi .

Ý a) dễ rồi chứng minh $|x_{n+1}-1| < \dfrac{1}{2}|x_n-1|$ như bạn ở trên ok.
Ý b) mình chứng minh bằng quy nạp với lưu ý:
*) Nếu $x_n >1$ thì $x_{n+1} < 1$
*) Nếu $x_n <1$ thì $x_{n+1} > 1$
(Dễ thấy do $f(x) = \sqrt{x+8}-\sqrt{x+3}$ là hàm nghịch biến trên tập xác định)
Từ đó mình sẽ chứng minh:
+) $x_n+x_{n+1} < 2$ nếu $x_n < 1$
+) $x_n+x_{n+1} > 2$ nếu $x_n > 1$
(Xét hàm $f(x) = x+\sqrt{x+8}-\sqrt{x+3}$ là hàm đồng biến trên tập xác định)
Đến đây thì quy nạp như sau:
Giả sử $\displaystyle n \le \sum_{i=1}^n x_i \le n+1$. Ta chứng minh $\displaystyle n+1 \le \sum_{i=1}^{n+1} x_i\le n+2$.
Thật vậy,
+) Nếu $x_n > 1$ thì $x_{n+1} < 1$ nên $\displaystyle\sum_{i=1}^{n+1} x_i =\sum_{i=1}^{n} x_i+x_{n+1} < (n+1)+1 = n+2$
Và do $x_n+x_{n+1}>2$ nên $\displaystyle\sum_{i=1}^{n+1} x_i = \sum_{i=1}^{n-1} x_i+(x_n+x_{n+1}) > (n-1)+2 = n+1$.
+) Nếu $x_n < 1$ thì làm ngược lại.

P/s: Shout out to 2M .
[RIGHT][I][B]Nguồn: MathScope.ORG[/B][/I][/RIGHT]
 

 
12-01-2018, 10:07 AM   #6
nguyentatthu
Super Moderator
 
: Nov 2007
: BH
: 212
: 135
:
Cho dãy số $\left\{x_n\right\}_{n\in\mathbb Z^+}$ xác định bởi công thức truy hồi $x_1=2$ và
\[{x_{n + 1}} = \sqrt {{x_n} + 8} - \sqrt {{x_n} + 3}\quad\forall\,n\in\mathbb Z^+ .\]
  1. Chứng minh rằng dãy đã cho hội tụ và tính giới hạn.
  2. Chứng minh rằng
    \[n \le {x_1} + {x_2} + \ldots + {x_n} \le n + 1\quad\forall\,n\in\mathbb Z^+ .\]
Một cách tiếp cận ý 2.
Ta có hàm số $f(x)=\sqrt{x+8}-\sqrt{x+3}$ nghịch biến và $x_1<x_2$ nên ta có dãy $$x_2<x_4<\cdots<x_{2n}<1<x_1<\cdots<x_{2n+1}.$$ Suy ra $$\begin{cases}x_{2n+1}+x_{2n+2}=x_{2n+1}+f(x_{2n+ 1})>x_1+f(x_1)>2\\ x_{2n+2}+x_{2n+3}=x_{2n+2}+f(x_{2n+2})<x_2+f(x_2)< 2 \end{cases}$$
Suy ra $$\begin{aligned} S_{2n}&=x_1+x_2+x_3+\cdots+x_{2n}\\&=x_1+x_2+(x_3+ x_4)+\cdots+(x_{2n-1}+x_{2n})\\&>2+0+2+\cdots+2=2n \end{aligned}$$
và
$$\begin{aligned} S_{2n}&=x_1+x_2+x_3+\cdots+x_{2n}\\&=x_1+(x_2+x_3) +\cdots+(x_{2n-2}+x_{2n-1})+x_{2n}\\&<2+2+2+\cdots+2+1=2n+1 \end{aligned}$$
Suy ra $2n<S_{2n}<2n+1$.\\ Chứng minh tương tuwjj ta cũng có $2n+1<S_{2n+1}<2n+2$. Từ đó ta có đpcm.
[RIGHT][I][B]Nguồn: MathScope.ORG[/B][/I][/RIGHT]
 
 
Le khanhsy (12-01-2018), zinxinh (12-01-2018)


« | »







- -

Inactive Reminders By mathscope.org
[page compression: 58.68 k/66.38 k (11.59%)]