Diễn Đàn MathScopeDiễn Đàn MathScope
  Diễn Đàn MathScope

  Diễn Đàn MathScope > Đại Học Và Sau Đại Học/College Playground > Lý Thuyết Số/Number Theory

News & Announcements

Ngoài một số quy định đã được nêu trong phần Quy định của Ghi Danh , mọi người tranh thủ bỏ ra 5 phút để đọc thêm một số Quy định sau để khỏi bị treo nick ở MathScope nhé !

* Nội quy MathScope.Org

* Một số quy định chung !

* Quy định về việc viết bài trong diễn đàn MathScope

* Nếu bạn muốn gia nhập đội ngũ BQT thì vui lòng tham gia tại đây

* Những câu hỏi thường gặp

* Về việc viết bài trong Box Đại học và Sau đại học


 
20-06-2018, 11:29 AM   #1
vnclubchemgio
+Thành Viên+
 
: May 2013
: 84
: 18
Một giả thuyết mạnh hơn định lý Fermat

Dựa trên sự quan sát các kết quả liên quan đến định lý Fermat, giả thuyết Beal, giả thuyết ABC....tôi đề xuất một giả thuyết sau đây:

Cho $A, B, C$ là ba số nguyên dương sao cho $A+B=C$ với $(A,B)= (B,C) = (C,A) = 1$. Phân tích ba số $A, B, C$ ra [Only registered and activated users can see links. ]:

$A=a_1^{x_1}a_2^{x_2}...a_n^{x_n}$,

$B=b_1^{y_1}b_2^{y_2}...b_m^{y_m}$,

$C=c_1^{z_1}c_2^{z_2}...c_k^{z_k}$

Giả thuyết khẳng định khi đó $\min\{x_i, y_j, z_h \} \le 5$ với mọi $1 \le i \le n, 1\ \le j \le m, 1\le h \le k$

Giả thuyết trên nếu được chứng minh nó sẽ rất mạnh, lúc đó các định lý Fermat, giả thuyết Beal, giả thuyết Fermat-Catalan chỉ là các trường hợp đặc biệt. Hiện tại chưa tìm được phản ví dụ.

Đào Thanh Oai
[RIGHT][I][B]Nguồn: MathScope.ORG[/B][/I][/RIGHT]
 
 
fatalhans (21-06-2018)


beal conjecture, fermat lastheorem, định lý feramta

« | »







- -

Inactive Reminders By mathscope.org
[page compression: 38.38 k/41.39 k (7.27%)]